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Abstract In this study, wemodel postglacial surface processes and examine the evolution of the topography
and denudation rates within the deglaciated Washington Cascades to understand the controls on and time
scales of landscape response to changes in the surface process regime after deglaciation. The postglacial
adjustment of this landscape is modeled using a geomorphic-transport-law-based numerical model that
includes processes of river incision, hillslope diffusion, and stochastic landslides. The surface lowering due to
landslides is parameterized using a physically based slope stability model coupled to a stochastic model of the
generation of landslides. The model parameters of river incision and stochastic landslides are calibrated based
on the rates and distribution of thousand-year-time scale denudation rates measured from cosmogenic 10Be
isotopes. Theprobability distributions of thosemodel parameters calculatedbasedon aBayesian inversion scheme
show comparable ranges from previous studies in similar rock types and climatic conditions. The magnitude of
landslidedenudation rates isdeterminedby failuredensity (similar to landslide frequency),whereasprecipitation
and slopes affect the spatial variation in landslide denudation rates. Simulation results show that postglacial
denudation rates decay over time and take longer than 100 kyr to reach time-invariant rates. Over time, the
landslides in the model consume the steep slopes characteristic of deglaciated landscapes. This response time
scale is on the order of or longer than glacial/interglacial cycles, suggesting that frequent climatic perturbations
during the Quaternary may produce a significant and prolonged impact on denudation and topography.

1. Introduction

The topography of the Earth’s surface is formed by interactions between tectonics, climate, and surface
processes. Under the conditions of time-invariant rock uplift rates, climate, lithology, and surface processes,
landscapes tend to approach a statistically invariant topographic form and a dynamic equilibrium between
denudation and uplift rates [Hack, 1960; Hergarten and Neugebauer, 1998; Hasbargen and Paola, 2000; Willett
and Brandon, 2002; Pelletier, 2004]. However, perturbations in tectonic rates, climate, lithology, or surface
processes may create imbalances between uplift and denudation rates, and topographic features will change
their forms over time [Davis, 1899; Riebe et al., 2000; Moon et al., 2011]. Such perturbations can be expected
in a recently deglaciated landscape, where changes in climate result in an abrupt change from glacial to
postglacial geomorphic processes. Previous research has studied deglaciated landscapes to examine the
distribution and rates of postglacial surface processes [Hobley et al., 2010; Norton et al., 2010a, 2010b; Moon
et al., 2011] and to understand landscape response to deglaciation [Dadson and Church, 2005; Herman and
Braun, 2008]. Understanding the response of deglaciated landscapes will help to understand the impact of
the periodic perturbations of climate over the Quaternary (e.g., glacial/interglacial cycles) on sediment and
chemical flux to the terrestrial and marine ecosystems and the spatial distribution of steep topographic
slopes. Studies have used numerical models to examine the geomorphic responses to climate and
geomorphic process changes using idealized or theoretical landscapes [Braun et al., 1999; Dadson and
Church, 2005], but only a few studies have modeled an actual deglaciated topography due to the difficulties
in parameterizing and modeling the controls of various surface processes and limited data on landscape
adjustment over millennial timescales [e.g., Herman and Braun, 2008].

One approach to understanding landscape adjustment to deglaciation uses geomorphic transport laws
(GTLs) to formulate rates of surface lowering or sediment transport in terms of measurable metrics and
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empirical parameters that can be related to topographic, climatic, ecologic, and lithologic controls [Dietrich
et al., 2003]. GTLs of river incision and hillslope processes have been studied using field measurements,
experiments, and mathematical and numerical models [Culling, 1960, 1963, 1965; Howard and Kerby, 1983;
Howard, 1994; Tucker and Bras, 1998; Roering et al., 1999; Whipple and Tucker, 1999; Stock and Dietrich, 2003;
Perron et al., 2009]. Landslide processes are challenging to model due to the wide variety and complexity
of landslide initiation and transport [Densmore et al., 1998; Dietrich et al., 2003; Dadson and Church, 2005;
Booth et al., 2013]. Since landslides are thought to be one of the dominant sediment sources in recently
deglaciated landscapes [Dadson and Church, 2005; Doten et al., 2006; Norton et al., 2010b; Moon et al.,
2011], it is critical to account for their role in the topographic evolution of deglaciated landscapes.

The Washington Cascades provide an excellent opportunity to model the topographic and erosional
evolution of deglaciated landscapes. The Washington Cascades are currently in topographic and erosional
disequilibrium after deglaciation occurred around 11–17 kyr ago [Porter, 1976]. The topography still shows
the features inherited from prior alpine glacial processes (e.g., cirques, steep side-valleys, and flat valley
bottoms), although postglacial processes are currently denuding this landscape [Mitchell and Montgomery,
2006]. Our previous study in this area calculated thousand-year-time scale denudation rates using
cosmogenic 10Be concentration (cosmogenic radionuclide (CRN)-derived denudation rates) [Moon et al.,
2011] and showed that these rates were approximately 4 times higher than million-year-time scale uplift
rates from apatite (U-Th)/He ages (A-He ages) [Reiners et al., 2003]. In addition, the spatial distribution of
denudation rates showed a good correlation with a factor of 10 variation in precipitation across the range.
We interpreted this correlation to reflect the sensitivity of landslide triggering in over-steepened
deglaciated topography to precipitation, which produced high denudation rates in wet areas that
experienced frequent landslides.

Based on the results of our previous study, we extend our research to examine the evolution of topography
and denudation rates of the deglaciated Washington Cascades over 103 to 106 year time scales. First, we
characterize postglacial denudation processes in the Cascades using a GTL-based numerical model. We
propose a GTL of stochastic landslide processes, which is formulated based on a physically based slope
stability model that is supplemented with a stochastic landslide generation rule. We explore two landslide
rules that have different landslide depth configurations. We then calibrate the model parameters based on
CRN-derived denudation rates and estimate the relative contributions of individual postglacial surface
processes. The uncertainties within and covariations between model parameters are estimated using a
Bayesian inversion scheme to assess the important controls of denudation rates. Finally, using current
topography as an initial condition, we simulate how the topography and denudation rates evolve as the
postglacial surface processes rapidly denude the deglaciated landscape. We estimate the minimum time
scale of landscape response to deglaciation and discuss how cyclic glacial/interglacial variations will affect
the long-term landscape evolution during the Quaternary.

We find that the calibrated model provides a satisfactory explanation of the thousand-year-time scale
denudation rates, modern topography, the observed frequency of landslide generation estimated for the
area, and the river incision coefficient independently estimated in similar rock types. Our model explores
potential ranges of response time scales of denudation rates after deglaciation. The minimum response
time scale of denudation rates in the deglaciated Cascade Mountains varies from 100 to 960 kyr, which is
on the order of or longer than the recent recurrence of deglaciation. This study shows that such a
landscape evolution model can provide insight into the time scale of landscape response and temporal
evolution of topography due to glacial/interglacial cycles.

2. Methods
2.1. Data Sources

We modeled a region of the Cascades that extends 140 km from N to S and 130 km from E to W (Figure 1).
Topography was represented by a 100m resolution digital elevation model (DEM) downsampled from
30m resolution National Elevation Dataset DEM. Mean annual precipitation (MAP) with 800m resolution
was acquired from the PRISM data set for 1971–2000 [PRISM, 2006] and resampled to the same 100m
resolution grid. Drainage area and slope were calculated based on a D8 flow routing scheme, and the
discharge was calculated from the distribution of precipitation using the same scheme [O’Callaghan and
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Mark, 1984; Pelletier, 2010; Shelef and Hilley, 2013]. The D8 flow routing scheme was used to calculate flow
paths and contributing areas, principally because it is preferable when the DEM resolution is coarse (i.e.,
100m DEM) relative to a typical channel width and/or hillslope length [Shelef and Hilley, 2013] (see
supporting information for details). Million-year-time scale uplift rates were assumed to be equal to
million-year-time scale exhumation rates inferred from A-He ages based on the assumption that mountain
relief has been similar since 8–15Ma in the Cascades [Takeuchi and Larson, 2005]. Bedrock A-He ages in
this region ranged from 4.4Ma to 60Ma, which corresponds to exhumation rates ranging from 0.01 to
0.33mm/yr [Reiners et al., 2002, 2003]. The spatial distribution of uplift rates was interpolated using a
Simple Kriging method allowing 100% measurement errors and smooth neighborhood interpolation
(Figure S1 in the supporting information). The smooth interpolation was applied with a large
measurement error (100%) to minimize the biases from outliers and to allow a smoothly extrapolated
surface within the extent of our study region. Clustering of A-He samples caused uplift rates that were
interpolated over the studied region to be less than those obtained from point measurements, which
ranged from 0.03 to 0.20mm/yr (Figure S1 in the supporting information). CRN-derived denudation rates
from 13 basins across the Cascades ranged from 0.08 to 0.57mm/yr, representing average denudation
rates over 1.1–7.4 kyr [Moon et al., 2011].

2.2. Landscape Evolution Model

We model postglacial surface processes of the deglaciated Washington Cascades using a GTL-based
numerical model [Howard, 1994; Dietrich et al., 2003; Shelef and Hilley, 2013]. This section describes the
structure of the model, while the impacts of the model assumptions made here are discussed in
section 4.1. The model includes bedrock uplift, sediment transport by linear diffusion, detachment-limited

Figure 1. Map of study area. The locations of 13 basins with CRN-derived denudation rates are shown as black circles, and
their drainage areas are shown by black lines. The open circles indicate partially glaciated basins whose area was less than
75% glaciated during LGM. The areas of current landslide inventories within our basins are shown in pink [Boyd and
Vaugeois, 2003].
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channel incision, and surface lowering
by stochastic landslide processes. The
elevation change due to these processes
can be expressed as

dz
dt

¼ U þ ∇# DSð Þ & KdAmSn & ηls (1)

where z is surface elevation (L) and t is time
(t). The U term on the right-hand side
represents vertical uplift rate of rock relative
to sea level (L t&1). The second term
represents surface lowering due to sediment
transport by linear diffusion, which is
expressed as a function of surface gradient
(S) and a spatially constant diffusivity
coefficient D (L2 t&1) [Culling, 1960, 1963,
1965]. The third term represents
detachment-limited channel incision. Based
on either channel-bed shear stress or stream
power, channel incision rate can be
expressed as a function of the local channel
slope (S), upstream contributing area (A (L2)),
erosional efficiency (Kd (L1–2 m t&1)), and
empirical constants of m and n whose ratio
(m/n) is commonly close to 0.5. The Kd is
affected by various factors such as rock
erodibility, precipitation, sediments, and
hydraulic geometry [Howard and Kerby,
1983; Seidl and Dietrich, 1993; Howard, 1994;
Whipple and Tucker, 1999]. The last-term, ηls
(L t&1), represents the surface lowering by
stochastic landslide processes, which are
likely affected by rock properties,
precipitation, vegetation, and local slopes
[Dadson and Church, 2005].

The stochastic landslide process is based on
the assumption that our model cannot
predict the exact location of landslides
but can predict the spatial distribution of
the relative propensity of slope failure
[Montgomery and Dietrich, 1994; Dadson
and Church, 2005]. Our stochastic landslide
model is motivated by Dadson and
Church [2005], who modeled the postglacial
topographic evolution of an idealized
glaciated valley using stochastic process
of deep-seated (bedrock) landslides. This
model triggered landslides randomly from a
subset of topographic grid cells whose
multiplication of local slope and elevation
exceeded a critical value. Similarly, we also
treat landslide processes as stochastic.
However, we trigger landslides using a
probability based on the spatial distributionTa
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of topographic slopes and degree of saturation of the near-surface layer, which together conspire to produce
spatial and temporal variations in pore pressures that ultimately aid in landslide failure.

The modeling of stochastic landslides consists of three parts: (1) assessing slope instability, (2) relating slope
instability to the probability of failure, and (3) determining landslide depth and volume of the failure. First, we
calculate the spatial distribution of slope instability using a topographic metric called failure index (FI). The FI
is calculated from the spatial distributions of precipitation and topography and is analogous to the inverse of
the factor of safety. Higher values of FI represent increasing slope instability. The FI value is calculated from a
version of the infinite slope approximation for the failure of a cohesionless frictional material, which is
coupled to a steady state hydrologic model [Montgomery and Dietrich, 1994; Moon et al., 2011].

To calculate FI for each topographic grid cell (in our study, 100m× 100m), we first calculate a wetness value
(hereafter,W).W represents the ratio between the hydraulic flux at a given precipitation relative to that at the
saturated soil [Montgomery and Dietrich, 1994]:

W ¼ qA
bTsinθ

(2)

whereW is allowed to vary from 0 (unsaturated) to 1 (completely saturated), q is the steady state precipitation
during a specific storm event (L t&1), A is the contributing area (L2) draining across the contour length b (L),T is
the saturated soil transmissivity adjusted for porosity (hereafter, transmissivity T (L2 t&1)), and θ is the local
slope in radians. We use the grid element size for b (i.e., 100m), calculate θ from topographic slope, and use a
constant value of T (Table 1). This model assumes steady state precipitation, which is not always achieved
during a typical storm (as such, it does not capture the transient hydrology that is demonstrably important for
triggering individual slope failures [Iverson, 2000]). To represent the spatial distribution of steady state
precipitation (q) for a storm event in the model, we use the spatial distribution of mean annual precipitation
(MAP) averaged between 1971 and 2000 [PRISM, 2006].

Based on a calculated wetness value, we calculate FI for the topographic grid cell as

FI ¼ S
S0

1&W
ρw
ρs

! "&1
¼ k Wð Þ S

S0
(3)

where S0 is the threshold slope that is the internal angle of friction of cohesionless material, S is the local
slope (tan θ), ρs is the wet bulk density of soil (2.0 g/cm3), and ρw is the bulk density of water (1.0 g/cm3).
The equation can be simplified in the form of local slope, threshold slope, and a variable k(W), assuming no
cohesion of the failed material. The k(W) varies from 1 to 2, which represents the degree to which landslides are
promoted by increased pore pressure.

Coupling the steady state hydrologic model to the slope stability model provides an assessment of the
relative propensity for slope failure but does not directly provide the timing of landslides because the
steady state assumption of the landslide model excludes time dependence. We introduce a time scale into
this analysis by assuming that increasing slope instability likewise increases landslide frequency [Reid,
1998; Griffiths and Fenton, 2004; Turner et al., 2010]. Based on FI, we calculate the rate of failure per unit
area of ground surface (landslides L&2 t&1) (hereafter, failure density, abbreviated to P), assuming a
modeled relationship with FI (Figure 2). After integrating the failure density over the grid cell size, we can
calculate the yearly probability that this grid cell will fail (hereafter, failure rate (landslides t&1)), similar to
landslide frequency.

The surface lowering by discrete landslides can be expressed as

ηls ¼ P FIð Þ# Δx Δyð Þ#d (4)

P ¼

Pmin if FI < FImin

Pmax & Pmin

FImax & FImin
# FI& FIminð Þ if FImin < FI < FImax

Pmax if FI > FImax

8
>><

>>:

where P is the failure density, which is a function of FI; ΔxΔy is the unit area of a topographic grid cell in the
model; and d is the thickness of landslide material. The relationship between P and FI is implemented based on
a piecewise linear function that assumes aminimum failure density (Pmin) at aminimum failure index (FImin) and
a maximum failure density (Pmax) at a maximum failure index (FImax) (Figure 2). This linear relationship is similar
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to the inverse relationship between failure
probability and factor of safety in Griffiths
and Fenton [2004]. We assume that Pmin is
zero at FImin of 0.5 (factor of safety of 2). The
FImin is intended to represent the stable
conditions that may not generate landslides
[Turner et al., 2010]. FImax and Pmax are free
parameters, which are calibrated based on
Bayesian approach described in section 2.3.

The landslide thickness d is measured from
the surface to the failure plane, which in
our model can extend into the bedrock
or be fixed at the soil-bedrock interface.
We test two scenarios based on these
assumptions. The first scenario assumes that
the failure plane extends deep into the bed-
rock. Hereafter, we refer this scenario as SD.
The landslide thickness d for each grid node
is calculated from elevation difference pro-
duced by the slope adjustment (Figure S2a
in the supporting information). We assume
that a landslide will lower the topographic

slope to the maximum stable slope Sf, which varies with the degree of saturation. For the condition of
instability (FI = 1), Sf is equal to S0/k(W) (equation (3)). We define the landslide thickness d as

d ¼ S& S0
k Wð Þ

! "
δx (5)

where δxwill be Δx in the N-S and E-W directions and
ffiffiffi
2

p
Δx in the NE-SW and NW-SE directions when Δx=Δy.

We did not assign a fixed Sf, because a statewide landslide inventory shows that the slopes of 118 landslides
in our basins vary: the mean slopes along landslides varies from 0.08 to 0.64 (interquartile range of 0.28–0.42),
and themaximum slopes vary from 0.1 to 0.95 (interquartile range of 0.47–0.65) (Figure S2b in the supporting
information) [Boyd and Vaugeois, 2003].

In the second scenario, we assume that the failure plane is located at a fixed depth of 1m, which we regard as
an approximate soil depth in the area [Schmidt et al., 2001; Doten et al., 2006; Hren et al., 2007]. This scenario
assumes a specific landslide depth, and we refer this scenario as SS. We acknowledge that the soil depth in
the Cascades varies spatially—our scenario-based approach is intended to provide broad constraints on the
end-member modes of slope failure that plausibly occur within this landscape. Therefore, we do not include
landslide rules with different thickness configurations as independent GTLs. Instead, we examine the impact
of these assumptions on our results, particularly the potential ranges of model parameters and response time
scales (section 4.3).

Landslides are generated based on failure probability deduced from a failure function between FI and failure
density relationship (Figure 2). In scenario SD, a topographic grid cell with FI> 1 has a landslide thickness
greater than zero. So landslides will occur in the cells with FI> 1. In scenario SS, a topographic grid cell
with FI> 0.5 is subject to failure. We calculate the expected landslide denudation rate at each grid cell due
to landslides, by multiplying the failure rate, the integrated failure density over a grid cell size, with the
thickness of landslide material (d). These rates represent the statistically averaged denudation rates from
landslides over a time scale longer than landslide recurrence intervals. These averaged denudation rates
are used to calibrate model parameters (section 2.3). The implementation of stochastic landslides for a
given time step in the landscape evolution model is explained in section 2.4.

2.3. Calibration of Model Parameters

Using the landscape evolution model described above, we calculate denudation rates from postglacial
processes including hillslope transport, river incision, and stochastic landslides. According to our previous
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study, basin-averaged denudation rates from cosmogenic 10Be over 1.1–7.4 kyr time scales varied by a factor
of ~7 across the Washington Cascades [Moon et al., 2011]. Our previous study showed that the spatial
distribution of FI corresponded to those of enhanced denudation rates, which suggests that landslide
processes likely contribute significantly to denudation rates. Other studies in deglaciated landscapes also
suggest that landslide processes will be the dominant sediment source [Dadson and Church, 2005; Doten
et al., 2006; Norton et al., 2010b]. Considering that the Cascades is occupied mostly by steep slopes and
has relatively thin soils (<2m) [Doten et al., 2006; Hren et al., 2007], we assume that hillslope transport
processes by linear diffusion will be a relatively minor contributor to the measured denudation rates
relative to landslide processes. Therefore, instead of optimizing soil diffusivity, we used the constant D of
0.0035m2/yr, which is an averaged soil diffusivity from Oregon Coast Range in Pacific Northwest [Reneau
and Dietrich, 1991].

Under these assumptions, we calibrate the model parameters for river incision processes and stochastic
landslides using the spatial distribution and magnitude of CRN-derived denudation rates. We examine the
ranges of modeled denudation rates by exploring model parameters using an exhaustive search method.
By comparing modeled with CRN-derived denudation rates, we find the best fit parameters and quantify
the uncertainties of model parameters using Bayes’ theorem [Bayes, 1763]. The Bayesian approach views
the model parameter as a joint probability density function (pdf) whose dimension corresponds to the
number of model parameters. In this approach, we can construct a joint probability density function of
model parameters based on misfit between model and observed data set. This joint pdf allows examining
uncertainties within and covariations between model parameters and informing the combination of the
model parameters that produce comparable fit to observed data set. The statistical approaches using
Bayes’ theorem such as brute-force, Metropolis-Hastings, and Markov-Chain Monte Carlo algorithms have
been applied to geomorphic studies to calibrate parameters in experiments and numerical models [Vrugt
et al., 2003; Hilley et al., 2010; Hobley et al., 2011; Pelletier et al., 2011]. We adopt the procedure described in
Hilley and Young [2008a, 2008b] and Hilley et al. [2010] but implement brute-force exhaustive sampling
instead of Metropolis-Hastings Markov-Chain Monte Carlo sampling method.

Based on the spatial distribution of precipitation and topography, we calculate the expected denudation
rates from river incision and stochastic landslides in the study area by varying five model parameters (Kd, T,
Pmax, FImax, and S0) in equation (1). We varied Kd, Pmax, and T by 4, 5, and 2 orders of magnitude with an
equal interval in log space 0.1, 0.1, an 0.05, respectively. We varied FImax from 1 to 30 with an interval of 1
and varied S0 from 0.3 to 1 with an interval of 0.1. The ranges of Kd and T are selected to encompass the
variations in previous studies [Montgomery and Dietrich, 1994; Stock and Montgomery, 1999], the maximum
FImax is calculated from current topography, S0 is obtained from landslide inventories (Figure S2b in the
supporting information), and the maximum Pmax is calculated considering spatial and temporal scales of
the model (see supporting information). In sum, we examined >20 million combinations of the five model
parameter (41× 41× 51× 30× 8) (Table 1). For each combination of the assigned model parameters, we
calculate the goodness of model fit using a weighted-residual sum of square errors (WRSS) between
expected denudation rates and CRN-derived denudation rates:

WRSS ¼
Xnb

i¼1

εmeas
i & εpredi

σmeas
i

 !2

(6)

where εi
meas is the CRN-derived denudation rate for basin i and εi

pred is the expected denudation rate for
basin i from GTLs with a given set of parameters, σi

meas is the uncertainty in CRN-derived denudation rate,
and nb is the total number of basins. The combination of the best fit parameters is identified from the
minimum WRSS (Table 1).

To examine the uncertainties within model parameters and the covariations between them, we estimate the
joint probability distribution of five parameters using Bayes’ theorem [Bayes, 1763; Hilley and Young, 2008a,
2008b; Hilley et al., 2010]. Based on Bayes’ theorem, we can calculate the a posteriori probability density
function (pdf) of the model parameters P(m|x), the conditional probability of the model parameters that
are taken into account by observation data sets. We calculate P(m|x) as

P m xjð Þ ¼ P x mjð ÞP mð Þ
Xnp

j¼1
P x mj j

$ %
P mj
& ' (7)
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where x is a set of measured data (i.e., CRN-derived denudation rates),m is a set of model parameters, np is the
total number of model parameters, and P(x|m) is the probability of data given the parameter values. P(m) is
the a priori probability of parameters; the probability of parameters before the observational data are taken
into account. We assume a uniform distribution of the a priori probability within minimum and maximum
range of parameter values that are physically plausible. Then, we compare the a posteriori probability ranges
of model parameters with estimates from other studies. The probability of the data given the model
parameters, P(x|m), is calculated as

P x mÞ ¼ exp &χ2
& '((&

(8)

where the reduced chi-square value ( χ2) is calculated from WRSS divided by degrees of freedom nf
(i.e., nf= 8 from 13 CRN-derived denudation rates and five free parameters). When χ2 is close to 1, it
means that misfit of the model lies within the uncertainties of the measurements. For each combination of
parameters, we calculate expected denudation rates using GTLs, WRSS, and χ2 using equation (6), the
discrete probability density of P(x|m) using equation (8), and then a posteriori probability distributions of the
model parameters P(m|x) using equation (7). The a posteriori pdf has five dimensions, which is difficult to
visualize. So we construct the marginal pdf for each parameter (Figure 3) and two-dimensional joint pdfs
(Figure 4) by integrating the conditional probabilities of all other dimensions except for the parameter
dimension of interest.

The a posteriori probability distribution of parameters will vary depending on the choice of the uncertainties,
σmeas, in the χ2 calculation. We can use the uncertainties of CRN-derived denudation rates from accelerator
mass spectrometry measurements as σmeas to calculate χ2 (hereafter, χ2meas). However, previous studies
showed that CRN-derived denudation rates can vary by a factor of 2 due to stochastic mass wasting
events [Niemi et al., 2005; Kober et al., 2012]. This suggests that the uncertainties of CRN-derived
denudation rates from infrequent sampling could be much larger than analytical uncertainties. In addition,
our numerical model has uncertainties, since it is based on a myriad of simplifying assumptions, such as
that of spatially uniform lithology and constant parameters of D, Kd, and T. These simplifying assumptions
and limitations make it difficult for the model to explain the full variation of CRN-derived denudation rates.
In this regard, we can conceptualize σmeas as an overall model inaccuracy, which includes the potential
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uncertainties in samples of CRN-derived denudation rates and the model uncertainties due to simplified
assumptions and limitations. We refer the calculated χ2 based on adjusted σmeas to χ2adj.

2.4. Numerical Simulation

Based on the best fit parameters for river incision and stochastic landslides, we simulate the topographic
evolution of the Cascades over time. Using current topography as an initial condition, we let surface
processes modify and be modified by topography during the model simulation. Since the Cascades lies
along a north-south axis and the rivers drain to the east or west, we use no flow and zero-flux boundaries
for N and S and open boundaries for E and W through which water and sediment freely flow. We use a
finite volume method to solve equation (1) and integrate the equation forward in time using forward Euler
method. We run the model for 1Myr with a fixed time step of 100 yr. We modify the topography using
hillslope diffusion and river incision processes first and then apply the stochastic landslide rule in each
time step. For hillslope diffusion and river incision processes, we add the changes of elevation to the
elevation values in the previous time step for all grid points. For stochastic landslides, we modify
the topography within the subset of grid points at which we predict failure to occur during that time step.
The details of model implementation for surface processes of hillslope diffusion and river incision are
explained in Shelef and Hilley [2013].

The stochastic landslides are implemented in the landscape evolution simulation in the following way. For
each topographic grid cell, we calculate the probability of failure within a time step by multiplying the
failure rate (t&1) with a time interval (i.e., 100 yr) (hereafter, failure probability; 0 for impossible and 1 for
certain failure). The failure probability is compared to a value randomly drawn from the uniform
distribution in the interval (0, 1). If the calculated failure probability exceeds the randomly drawn value, a
landslide is triggered and the elevation is lowered by landslide thicknesses. The landslide thickness is
calculated as elevation difference during a slope adjustment between surface slope and failed slope in
scenario SD and set to 1m in scenario SS. We assume that the failed material is transported out of the
river network within a single time step and estimate the amount of surface lowering for each time step.
For scenario SS, we assume that the soil will be produced or transported within a given time step and be
available to fail in the next time step. The assumptions of instantaneous evacuation of failed landslide
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material and production/transport of soil within the modeled time step may not be plausible in real
landscapes. We discuss potential impact of these assumptions on the response time scale in section 4.1. By
applying overall elevation changes due to uplift rates (Figure S1 in the supporting information) and
surface processes over time, we examine how the topography and denudation rates will evolve as the
deglaciated landscape adjusts its form to postglacial surface processes. Additional details of the model
(such as spatial and temporal discretization) is elaborated in the supporting information.

3. Results
3.1. Calibration of Model Parameters

The best fit parameters for stochastic landslides and detachment-limited river incision are identified by the
minimum of WRSS value in the exhaustive search. The best fit parameters for scenario SD, hereafter
referred to SD1, are Kd= 1.0× 10&6m0 yr&1, T=1.1× 103m2 yr&1, Pmax = 4.0× 10&9m&2 yr&1, FImax = 1, and
S0 = 1 (Table 1). The expected denudation rates from current topography with the best fit parameters vary
from 0.07 to 0.51mm/yr (Table 2), while the CRN-measured denudation varied from 0.08 to 0.57mm/yr
[Moon et al., 2011]. There is a good correlation between the expected and measured erosion rates
(R2 = 0.669) (Figure 5). The root-mean-square error between the CRN-derived denudation rates and
expected denudation rates from the best fit parameter is ±0.11mm/yr. This corresponds to 33% of the
average of CRN-derived denudation rates of the Cascades. Assuming that our samples are well mixed, the
model results from SD1 predict basins in the west have more contributions from landslides (63–79%) than
those in the east (11–65%) (Table S1 in the supporting information). The basin with the highest expected
denudation rate, WR10 in the west, also had the highest contribution to erosion from landslide processes
(79%). In contrast, the basin with the lowest denudation rate, WR2 in the east, has the lowest denudation
rates and the highest contribution from river incision (89%).

We estimate the probability distribution of the a posteriori model parameters using χ2 and Bayes’ theorem.
With ~7% measurement errors of CRN-derived denudation rates for σmeas, the χ2meas is 35.87. This high χ2

results from the small uncertainties for the measured denudation rates. To account σmeas as an overall

Table 2. Summary of Basin Characteristics and Denudation Rates and Response Time Scale

Scenario SD1 Scenario SS1

Drainage Long-Term CRN-Derived
Denudation Rate Denudation Rate

Sample Latitude Longitude Area Uplift Ratea Denudation Rateb Best Fitc (0–5 kyr)d (0–1000 kyr)e Time Scalef Best Fitc (0–5 kyr)d Time Scaleg

Name (°) (°) (km2) (mm/yr) (mm/yr) 1σ (mm/yr) Mean Time-Invariant kyr (mm/yr) Mean kyr

WR1 47.821 &120.422 525.0 0.03 0.24 0.02 0.16 0.19 0.16 - 0.18 0.17 903
WR2 47.737 &120.369 235.8 0.03 0.13 0.01 0.07 0.08 0.08 - 0.08 0.08 463
WR3 47.663 &120.251 1074.1 0.03 0.17 0.01 0.11 0.13 0.12 - 0.12 0.12 683
WR4 47.843 &120.665 445.9 0.03 0.43 0.03 0.21 0.24 0.18 125 0.22 0.21 958
WR5 47.769 &120.802 238.0 0.04 0.28 0.02 0.21 0.27 0.16 140 0.24 0.24 768
WR6 47.688 &120.739 103.3 0.04 0.20 0.01 0.28 0.34 0.24 185 0.27 0.28 858
WR7 47.543 &120.717 500.0 0.06 0.23 0.02 0.27 0.31 0.24 100 0.28 0.28 763
WR8 47.548 &120.611 345.7 0.07 0.08 0.01 0.12 0.15 0.14 - 0.14 0.14 313
WR9 47.803 &121.293 172.6 0.09 0.41 0.03 0.25 0.31 0.17 125 0.29 0.29 363
WR10 47.819 &121.555 377.2 0.11 0.54 0.04 0.51 0.60 0.25 140 0.42 0.41 443
WR11 47.837 &121.659 1384.6 0.14 0.57 0.04 0.41 0.49 0.23 145 0.35 0.35 283
MH17 47.656 &121.293 126.2 0.20 0.46 0.03 0.49 0.61 0.26 180 0.38 0.38 178
MH22 47.714 &121.168 61.0 0.08 0.43 0.03 0.30 0.35 0.14 170 0.31 0.31 473

aBasin averaged long-term million-year-time scale uplift rates from A-He ages [Reiners et al., 2002, 2003] (Figure S1 in the supporting information).
bCRN-derived denudation rates are measured from cosmogenic 10Be concentration, representing thousand-year-time scale denudation rates [Moon et al., 2011].
cExpected denudation rates from Bayesian best fit parameters using the exhaustive search results.
dThe averages of simulated denudation rates for initial 0 to 5 kyr.
eThe time-invariant denudation rate defined 5 kyr averaged denudation rate, filtered with a 25 kyr averaging window, shows a variation of less than 1% for 10

time steps (50 kyr).
fThe decay time scale is determined by the approach of the 5 kyr averaged denudation rate, filtered with a 25 kyr averaging window, to a time-invariant rate.

Samples whose time invariant rate lies within 1σ range of initial 0–5 kyr denudation rates are excluded.
gThe response time scale when the 5 kyr averaged denudation rate lies within 40% of long-term uplift rates.
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model inaccuracy that can be larger than analytical uncertainties, we adjust σmeas to produce χ2 = 1 with the
best fit parameters (χ2adj). The adjusted σmeas corresponds to ~42% uncertainties in CRN-derived denudation
rates. Using χ2adj, we calculate the a posteriori probability distributions of the model parameters P(m|x)
(Figures 3 and 4). The 95% credible interval (CI) of marginal probability distribution is 0.1–
2.0× 10&6m0 yr&1 for Kd, 0.4–2.8× 103m2 yr&1 for T, 0.2–25.1× 10&8m&2 yr&1for Pmax, 5–29 for FImax, and
0.5–0.9 for S0. The median and 1σ range of probability of the expected denudation rates based on χ2adj and
χ2meas are shown in Figure 5 and Table S1 in the supporting information. The χ2adj produces a larger range
of expected denudation rates than χ2meas.

Themarginal and two-dimensional joint probability distribution help to examine the uncertainties within and
covariations between model parameters. Because the best fit parameters are determined from the highest
probability at five-dimensional joint pdf, the values at the highest probability in marginal or two-
dimensional joint pdfs do not necessarily correspond to the location of best fit parameter values (Table 1).
The marginal probability distribution of parameters from χ2adj shows that Kd and Pmax are well constrained
compared to T, FImax, and S0 (Figure 3). The probability of T, FImax, and S0 increases with each value
(Figures 3b, 3d, and 3e). The joint pdf of Kd and Pmax shows that a high probability zone has maximum
bounds for both values (Figure 4b). The joint pdf of T and Pmax defines a closed zone of high probability
(Figure 4d). The joint pdfs of both Pmax and FImax and Pmax and S0 show that the high-probability zone lies
along a positive slope (Figures 4f and 4i). This indicates that covariations between parameters of Pmax

and FImax and Pmax and S0 can produce similar model fit. In fact, the second minimum of WRSS in
the exhaustive search for scenario SD, hereafter referred to SD2, are Kd= 1.0× 10&6m0 yr&1,
T=0.9× 103m2 yr&1, Pmax = 25.0× 10&9m&2 yr&1, FImax = 12, and S0 = 0.9 with χ2meas of 35.93. These
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Figure 5. Plots of CRN-derived denudation and the range of the expected denudation rates from scenarios of (a–c) SD and (d–f ) SS. Expected denudation rates
are from parameter calibrations (Figures 5a, 5b, 5d, and 5e) and model simulation (Figures 5c and 5f). The probability of expected denudation rates with given
parameters, P(x|m), is calculated from χ2adj (Figures 5a and 5d) and χ2meas (Figures 5b and 5e). The black circles represent the median, and the error bars represent
the 1σ range of the probability distribution of a posteriori expected denudation rates. The gray circles indicate the expected denudation rates from current
topography and the best fit parameters (SD1 and SS1). Plot of CRN-derived denudation rates with 1σ uncertainties and the range of the simulated denudation rates
averaged over first 50 time steps (0–5 kyr) with 1σ range in error bars (Figures 5c and 5f).
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parameters have similar Kd but very different Pmax and FImax. The parameters of SD2 also produce similar
denudation rates, showing a good correlation with CRN-derived denudation rates (R2 = 0.666).

We also optimize five model parameters for scenario SS. The best fit parameters for scenario SS, hereafter
referred to SS1, have lower Kd and higher Pmax values than scenario SD (Table 1 and Figure S3 in the
supporting information). SS1 predicts that sediments are mostly derived from landslides (~100%), while
few are sourced from river incision. The best fit Kd is 1.0× 10&9m0 yr&1, and the best fit Pmax is
2.5× 10&6m&2 yr&1 with FImax of 29. The corresponding failure density at failure condition (PFI = 1) is
4.4× 10&8m&2 yr&1, which is an order of magnitude higher than SD1. The marginal and joint probability
distributions of parameters in scenario SS show similar distributions with those in scenario SD (Figure 3
and Figure S3 in the supporting information). The minimum χ2meas of this scenario is 39.0, which is higher
than those of SD1 (35.9). The expected denudation rates from SS1 also show a good correlation with
CRN-derived denudation rates (R2 = 0.705; Figure 5) but underestimate the high denudation rates.

3.2. Simulation of Postglacial Processes and Topographic Evolution

Using the model fit parameters, we simulated the evolution of the topography and denudation rates of the
Washington Cascades to estimate the response time scales of deglaciated landscapes. Simulated denudation
rates from scenario SD1 averaged over 0 to 5 kyr correspond well with CRN-derived denudation rates and the
expected denudation rates from current topography with the best fit parameters (Figures 5b and 5e). The
relative standard deviation of simulated denudation rates (1σ/mean) range from 7 to 34% with an average
17% for our studied basin. Three basins (WR6, MH17, and MH22) with small drainage areas have larger
mean relative standard deviation (25–34%).

Simulated denudation rates decay as surface processes preferentially modify steep topography. Denudation
rates from basins that experienced limited glacial scour during the Last Glacial Maximum (LGM) have less
decay throughout model simulation relative to simulated basins with high glacial scouring (e.g., WR2, WR3,
and WR8, whose areas of which were less than 75% glaciated [Moon et al., 2011]). We define landscape
response time as the time to take for 5 kyr averaged simulated denudation rates to be within ±40%
uncertainty of the million-year-time scale uplift rate. We assigned 40% uncertainty considering the overall
model inaccuracy σadj (~42%). MH17 and WR11 have response times of 150 and 210 kyr, respectively.
However, denudation rates from the other basins decay to values higher than million-year-time scale uplift
rates. After they reach certain rates, they sustain similar values or slightly increase during the simulation
time. To obtain the overall, long-term pattern from 5 kyr averaged denudation rates that still show
stochastic variations, we filter 5 kyr averaged denudation rates with a 25 kyr averaging window. A time-
invariant denudation rate that is defined as 5 kyr averaged denudation rate, filtered with a 25 kyr
averaging window, shows a variation of less than 1% for 10 time steps (50 kyr). The time-invariant rates
vary from 0.08 to 0.26mm/yr and are reached around 100–185 kyr. These rates are roughly comparable to
million-year-time scale uplift rates (0.03–0.20mm/yr) but are on average 0.11 (0.05–0.20)mm/yr higher
than the uplift rates (Table 2).

To examine the role of the chosen model parameters and assumptions, we also determine the response time
scales for other scenarios. We simulate the topographic evolution of the second best fitting parameters for
scenario SD (SD2) and the best fitting parameters for scenario SS (SS1). In SD2, the denudation rates
slightly increase in the first ~20 kyr, then decay over time. Simulated denudation rates reach time-invariant
rates around 150–310 kyr (Figure S5 in the supporting information) and vary from 0.09 to 0.27mm/yr.
Denudation rates of SS1 show different temporal evolution from scenario SD. Denudation rates from
individual model time steps show less variation due to landslides with smaller volumes and decay more
linearly than those from scenario SD. Over the simulation, denudation rates continuously decline and do
not reach time-invariant rates during the simulation. In this scenario, response time scales reach <±40%
uncertainties of the million-year-time scale uplift rates vary between 180 and 960 kyr. The response time
scales in the west are shorter (180–480 kyr), while they tend to be longer for basins in the east (310–960 kyr).

To examine how the spatial distribution of denudation processes changes over time, we show the spatial
distribution of time-averaged denudation rates over 40 kyr from 0 to 120 kyr (Figure 7). The simulation
based on SD1 illustrates that in the initial 40 kyr, landslides with larger depth occupy the steep regions
of this landscape on the sidewalls near the bottom of oversteepened glacial valleys and on high peaks.
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As a result, denudation rates are very high for those regions (Figure 7a). Simulation based on SS1 shows
that denudation rates are higher in the regions with higher slopes, indicating that those areas fail more
frequently during time steps. Since discrete landslides in this scenario erode only 1m, steep regions
are maintained for longer than in scenarios SD1 and still produce high denudation rates in the later
time periods (80–120 kyr) (Figure 7f). Overall, more landslides occur in western basins due to the
higher precipitation rates and steeper slopes inherited from previous glaciations (Figure S6 in the
supporting information).

4. Discussion
4.1. Impact of Landslide Model Assumptions

Our landslide model relies on several assumptions that limit the applicability of this approach. First, we use a
slope stability model designed for shallow landslides to assess the slope stability for landslides whose depths
extend to bedrock (scenario SD). Montgomery and Dietrich [1994] originally proposed their physically based
slope stability model to assess the stability of shallow landslides whose spatial extent is in the order of tens of
meters and whose failure plane is located on the bedrock-soil interface (~1m). The landslide thickness of
shallow landslides in Montgomery and Dietrich [1994] are similar to 1m landslide thickness in scenario SS.
However, our scenario SD typically has landslide depths deeper than the bedrock-soil interface. The
potential depth of landslide failure surfaces is ~18m on average and up to 417m based on best fit S0 and
T in SD1.

The coupled slope stability and steady state hydrologic model has been used to assess the bedrock landslide
based on the degree of water saturation of a rock mass above a failure plane by Günther et al. [2004]. They
assumed that the bedrock above the failure plane was a continuous hydrologic unit, such that
groundwater flow is determined by the orientations of all surrounding transmissive layers. They used the
topographic gradient to assess the extent of shallow groundwater saturation during rainfall events. Their
assessment of groundwater saturation was supported by measurements of runoff and groundwater
pressure head, as well as the properties of hillslopes in the study area with fractures extending to depths
of ~20m. Previous studies in the Cascades in southern Washington have also shown that the hydraulic
gradient of groundwater is similar to that of the topographic gradient and that fractures in bedrock are
the primary source of porosity [Vaccaro et al., 2009; Gendaszek et al., 2014]. Additionally, these studies have
reported rapid groundwater fluctuations in the fractured crystalline rocks during rainfall events, suggesting
that near-surface transport of groundwater responds quickly to short-term rainfall events. In this study, we
therefore adopt the approach of Günther et al. [2004] and use topographic wetness as a simple first-order
approximation of the degree of saturation of bedrock layers as well. In this regard, we use the GTL form
for both scenarios SD and SS, optimize the model parameters for each scenario, and examine the potential
ranges of the response time.

Second, we assume that the landslide areal size is fixed to the size of a grid cell. Our approach considers
topographic and climatic controls that determine individual landslide occurrences. However, because the
simulated landslide area is fixed, it cannot simulate commonly observed landslide size-frequency
distributions [Hovius et al., 1997; Stark and Hovius, 2001]. In the Pacific Northwest, Montgomery et al. [1998]
compiled an inventory of 3224 landslides and computed their size distribution. Most landslides (~90%)
have areas less than 10,000m2, with a mean size of ~8000m2, and very few landslides have areas larger
than 20,000m2. These data suggest that the fraction of landslides larger than our cell size (10,000m2) is
~10%, which should be considered as an upper bound as very small landslides are often unmapped. Thus,
rather than implementing a multiple-cell failure model, we focus on constraining the average failure
density (landslides m&2 yr&1) within our grid cell size based on measured denudation rates and explore
the ranges of potential landscape response time scale based on the two landslide thickness scenarios.
However, we cannot rule out the possibility that a multiple-cell failure model, in which increased landslide
areas result in greater landslide thicknesses, may increase denudation rates and shorten estimates of the
response times. The artifacts resulting from a grid-cell discrete landslide are evident in SD2. In SD2, we
observe that the number of points that are affected by landslides slightly increases, and high denudation
rates are sustained for the initial ~20 kyr (Figure S5 in the supporting information). This is related to the
implementation of a grid-cell-wise landslide and its upslope propagation though time. The removal of
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material via the initial failure of a grid cell will lower its elevation and increase the slope of the upstream
neighbors during a time step. This will in turn increase the probability of failure for these upstream cells in
future time steps and produce the initial increase of denudation rates. This may contribute to the longer
decaying time observed in SD2 as compared to SD1 (Figure 6 and Figure S5 in the supporting information).

Third, we assume simple forms of GTLs and use a limited number of surface processes in our analysis. The
simplified formulations and limited use of GTLs are intended to minimize the number of parameters in
GTLs to improve the parameter search using statistical methods. Since we have limited information (e.g.,
CRN-derived denudation rates, A-He ages, topography, and precipitation), we focus on optimizing a few
variables critical for postglacial surface processes like landslides (e.g., T/q and Pmax), which are suggested
to be a dominant sediment source in deglaciated landscapes [Dadson and Church, 2005; Doten et al., 2006;
Norton et al., 2010b; Moon et al., 2011].

We assume spatially uniform hydrologic properties of rock (uniform T). Transmissivity T is expected to vary
with lithology, soil depth, vegetation, and scale. Since mostly granitic and metamorphic rocks floor our
studied basins, the assumption of uniform lithology may be valid. Ignoring surface soil, uniform lithologies
in our area may produce relatively uniform mean bedrock transmissivity at depth. However, it may be
inappropriate in other areas with different rock types (i.e., sedimentary rocks) [Hunting et al., 1961]. While
variations in T over short length scales may also arise due to changes in fracture networks and soil depth,
the dearth of field data available to constrain spatial variations in T complicate the definition of a spatially
variable distribution of T in our model. As such, we assign a uniform value for T but acknowledge that this
parameter could be varied in space and time as more information relating its variation to other modeled
properties are formulated.

Figure 6. The evolution of denudation rates from postglacial processes based on the scenario SD1. Basins are shown in
ascending order of the CRN-derived denudation rates. Each panel shows the time scale from 0 (present) to 200 kyr. The
gray points show the denudation rates from all time steps, and the black circles represent the averages using a 5 kyr
moving window. The 1σ range within the 5 kyr averaging window is shown as solid lines. We show the results of simulated
denudation rates on the same axis scale from 0 to 1mm/ yr. BasinsWR8, WR2, andWR3were less than 75% glaciated during
the LGM resulting in initial postglacial denudation rates similar to uplift rates.
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We use the spatial distribution of mean annual precipitation (MAP) averaged between 1971 and 2000 [PRISM,
2006] to represent the spatial distribution of steady state precipitation (q) for a storm event in the model.
Previous studies have used precipitation as a threshold control that can initiate landslides [Montgomery
and Dietrich, 1994]. We assume that higher precipitation will increase pore water pressure on the failure
surface and thus increase probability of failure and landslide frequency [Reid, 1998; Turner et al., 2010].
Previous studies in this region showed that the maximum 24h rainfall intensity shows a similar spatial
distribution with MAP due to a significant orographic effect on precipitation [Wallis et al., 2007]. This
suggests that the relative spatial distribution of MAP may mimic the overall distribution of rainfall intensity
of individual storm events that likely generate landslides. Thus, we use the spatial distribution of MAP to
represent rainfall intensity (q). We also assume that this spatial distribution of MAP will be consistent over
the modeled time scale (~1Myr). Since paleoclimate studies show that the relative distribution of
precipitation has been consistent since 8–15Ma [Takeuchi and Larson, 2005], this assumption is
somewhat defensible.

We did not account for the spatial variation of precipitation for river incision processes like most of other
landscape modeling studies on postglacial fluvial processes [Braun et al., 1999; Dadson and Church, 2005;
Norton et al., 2010a]. Although erosional efficiency, Kd, for river incision should be a function of
precipitation based on the stream power law, many studies have found it difficult to resolve the impact of
this effect on incision dynamics [Stock and Montgomery, 1999; Snyder et al., 2000]. In contrast, the climatic
controls on landslide processes are commonly observed [Reid, 1998; Turner et al., 2010]. This may be due
to Kd being also affected by other factors such as critical shear stress, lithology, erosional processes, and
sediment supply. Since we lack information to constrain those parameters of river incision, we used a
simple GTL and spatially uniform Kd.

An important surface process that we did not include in our landscape model is alluvial transport. Instead, we
assume that sediment generated by mass failure will be transported through the model domain in less than a
model time step (100 year). Because the Cascades are characterized by a relatively humid climate
(500–5000mm/yr) and the studied basins have large drainage areas with high-order streams, we assume
that those rivers have a high transport capacity capable of transporting the sediments [Tunnicliffe and
Church, 2011]. In reality, the sediments from large landslides can reside in the flat glacial valley bottom for
substantial periods of time and those impoundments may decrease both incision and transport efficiency
of the channels. Indeed, some of the Quaternary glacial deposits are still present in deglaciated valleys
[Hunting et al., 1961], and large boulders are present in channels along glacial valleys. If sediment cover
acts to retard channel incision, our response time scale should likewise be longer. In addition, we did not
include nonlinear, diffusive hillslope transport processes [Roering et al., 1999]. If we include nonlinear
diffusive transport process, our landslide sediment flux will be compensated and optimized to lower
failure density. Since our landslide GTL assumes instantaneous transport, its compensation with nonlinear
hillslope transport will lengthen the response time scale.

We also did not take into account soil production processes. In SS1, when a landslide occurs, we assume
that 1m of soil will be transported and reproduced during our modeled time step (100 year) and
therefore be available to fail in the next time step. This corresponds to a grid-cell averaged soil
production rate of ~10mm/yr and basin-averaged soil production rates ranging from 0.08 to 0.42mm/yr.
The maximum soil production in the Oregon Coast Ranges was measured as 0.3mm/yr at zero soil
depth [Heimsath et al., 2001], which is lower than our assumed rates of 10mm/yr. If we assume that the
amount of failed material is solely controlled by soil production rate, this will result in lower landslide
rates due to the reduced amount of failed material. This will ultimately have the effect of increasing the
response time scales.

Lastly, we assume that our 10Be-measured denudation rates are representative of basin-averaged
denudation. The bedrock landslide sediments from deeper depths tend to have low 10Be concentrations,
so the input of these sediments can bias our measured denudation rates and model parameters to higher
values. Previous studies showed CRN concentrations produce a reliable basin-average denudation rate in
regions dominated by bedrock landslides when sampled from a larger catchment area (>100 km2) [Niemi
et al., 2005; Yanites et al., 2009]. Considering that most of our sampled basin has drainage areas larger than
100 km2, except for MH22 (60 km2), it is appropriate to use denudation rates to calibrate our model. In
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addition, even if the input of bedrock landslides produced higher calibrated model parameters, this would
lead to a rapid landscape response. This suggests that we should consider our response time scale
estimates as a minimum. While we make a number of assumptions, many of those assumptions likely
produce response time scales faster than what might be expected in reality. As a result, our reported
response time scales are likely minimum estimates of response time scale.

4.2. The Rates and Controls of Postglacial Surface Processes

We calibrate the model parameters of river incision, Kd, and stochastic landslides, T, Pmax, FImax, and S0, based
on CRN-measured denudation rates. The magnitude and distribution of expected denudation rates from the
model are highly dependent on the model parameter choices. The marginal probability distribution of the a
posteriori parameters shows that the range of Kd and Pmax with high probability is better defined than those
of T, FImax, and S0. This suggests that these parameters factor heavily into the correspondence between
expected and measured denudation rates. The upper bounds of the probability of Kd and Pmax are
constrained better than the lower bounds (Figure 4b). This is expected because higher Kd and Pmax can
produce rates much higher than CRN-derived denudation rates, which will result in high χ2 values and
extremely low probability.

Optimized values of parameters can vary by an order of magnitude for different modeled scenarios. The
optimized Kd in SD1 (1.0× 10&6m0 yr&1) is 3 orders of magnitude higher than that in SS1
(1.0× 10&9m0 yr&1). Considering the reported values for Kd of similar rock types in Australia (10&7 to
10&6m0.2yr&1) [Stock and Montgomery, 1999], the Kd in SD1 is more plausible. The extremely low Kd and
limited river incision may not be likely in this study region but are affected by optimization with our
landslide rule with constant depth. This suggests that the spatial variation of denudation rates is explained
better with a landslide rule in which landslide depth scales with climate or topography to some degree. In
addition, SD1 produced a failure density at FI = 1 (PFI = 1) as 0.4× 10&8m&2 yr&1 with an average potential
failed depth of ~18m, while SS1 produced the PFI = 1 as 4.4× 10&8m&2 yr&1. The lower PFI = 1 in SD1 than
SS1 suggests that comparable denudation rates can be achieved with infrequent, larger landslides or more
frequent, smaller landslides.

The failure density from SS1 in the Cascades is higher than the range of the long-term failure density of
shallow landslides on the Oregon Coast ranges, which is estimated as 1–3× 10&8m&2 yr&1 with the same
soil depth of 1m [Montgomery et al., 2000]. The calculation is based on 80–100 hollows/km2 with 3–8 kyr
recurrence interval measured from 14C dating from basal colluviums. Our model scenario SS1 predicts
more frequent shallow landslides in the Cascades than those in the Oregon Coast ranges. This increased
failure density in deglaciated landscapes is likely due to oversteepened slopes considering the similar
climatic settings [PRISM, 2006].

The joint a posteriori pdfs show that there are covariations between Pmax and FImax and Pmax and S0. This
covariation may emerge due to the prescribed, a linear relationship between FI and Pmax with a linear
coefficient of (Pmax-Pmin)/(FImax-FImin) (Figure 2). The (Pmax-Pmin)/(FImax-FImin) is the same with the twice of
PFI = 1 (Figure 2). Considering the slope distribution of our studied basin (interquartile range of 0.29–0.63),
75% of our topographic grid cells will have FI< 1.2. The high probability lies where the combination of
landslide parameters, Pmax, S0, and FImax, can constrain the failure density of most topographic grid cells
(e.g., PFI = 1). This argument is supported by the range of 95% CI of PFI = 1, which is 1 order of magnitude
narrower than those of Pmax (Table 1). In addition, this covariation likely produces a linear increase in
marginal probability of FImax and S0 in Figure 3 because higher values of FImax and S0 produce similar
model fits with larger range of Pmax (see Figures 4f and 4i).

The broader pdf of transmissivity T implies that the magnitudes of denudation rates are less sensitive to T
than Pmax. Variations in T will change wetness and therefore k(W), but the 2 order of magnitude variation
of T will only result in a range of (0, 1) in wetness and (1, 2) in k(W). Although transmissivity T appears less
important in determining the magnitude of basin-averaged denudation rates, it does impact the spatial
distribution of denudation rates. The a posteriori T distribution has a narrower range of high probability
when using smaller, measured uncertainties, σmeas, than when using larger, adjusted uncertainties, σadj

(gray lines in Figure 3b). The best fit T values from both SD1 and SS1 are optimized to maximize the spatial
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variation of k(W). The best fit T value is ~3m2/d (~1100m2/yr) in SD1, which is more than an order of
magnitude lower than ~65m2/d of Montgomery and Dietrich [1994]. This is largely because our measure
of q (MAP) is lower than that produced by rainfall intensity from storms. For example, the rainfall intensity
of 24 h maximum rainfall with 10 year return periods varies from 85 to 173mm in our basins, which are
approximately 20–30 times higher than MAP [Wallis et al., 2007]. Based on the best fit T value from SD1,
the basin-averaged T/q varies from 350 (WR10) to 1170m (WR2). Montgomery and Dietrich [1994] used
values of the hydrologic parameter T/q of ~ 350m as a lower limit representing a saturated condition. This
value is similar to our basin-averaged T/q in the west that is largely affected by increased pore pressure
due to higher precipitation than eastern counterpart. The similar range of the calibrated hydrologic
parameter T/q between our study and Montgomery and Dietrich [1994] suggests that the optimized T/q
from statistical model provides a good estimate for the spatial distribution of the hydrologic parameter in
the study area.

4.3. Topographic and Erosional Evolution of Deglaciated Landscapes

Using the calibrated parameters for modeling river incision and stochastic landslides, we examine the
evolution of topography and denudation rates in the Washington Cascades as the landscape adjusts its
form to postglacial processes. Landslide processes preferentially denude the steep regions of deglaciated
landscapes, including oversteepened valley walls near the bottom of glacial valleys and the peaks above
the glacial equilibrium line during LGM (Figure 7 and Figure S6 in the supporting information). The
landslide inventory in our study area also shows that mapped landslides are near those steep regions
[Boyd and Vaugeois, 2003] (Figure 1). This is consistent with other studies in deglaciated landscapes, which
showed that debris flows and landslides occurs in the glacially-steepened valleys [Norton et al., 2010b].

The scenario-based simulations allow us to examine the temporal evolution of denudation rates and the
potential ranges of response time scales of denudation rates. In SD, due to the prevalence of landslides
with large volumes, denudation rates have larger variations. The instantaneous removal of those landslide

Figure 7. The spatial distributions of time averaged denudation rates of the WR9 basin over 0–40 kyr, 40–80 kyr, and 80–120 kyr from simulation results from
scenarios of (a–c) SD1 and (d–f) SS1. Warm colors, drawn on a shaded relief map at the initial time (0, 40, and 80 kyr), represent areas with higher denudation rates.
The full extent of model domain is shown in Figure S6 in the supporting information.
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materials leads to a rapid exponential decay of denudation rates. In this scenario, simulated denudation rates
asymptotically decay toward time-invariant rates that are comparable to, but higher than million-year-time
scale uplift rates. The higher time-invariant rates may be due to the increased river incision rates resulting
from reorganized stream networks and channelized drainage basins in the deglaciated landscapes (Figure 7).
Basins that require large reorganizations of some of the watershed drainage areas produce large differences
between the time-invariant rates and uplift rates (e.g., WR6 and WR7; 0.20 and 0.18mm/yr, respectively).
Previous work suggests that the reorganization of drainage network for fluvial system may take
approximately 1 to 3 times the duration that erode an interval equivalent to the relief of the mountain belt
(e.g., 5–15Myr in this study area) [Howard, 1994; Whipple, 2001]. This is much longer than our modeled
timespan (1Myr), and the time scales for the initial pulse of postglacial denudation rates from landslides to
decay to time-invariant rates (100–960kyr in SD1 and SS1). Another possibility is that our landslide rule
creates steep landscapes with threshold slopes after slope failure and that these steep landscapes produce
higher denudation rates from hillslope transport and river incision. In reality, local deposition of debris on
proximal slopes and valley floors can reduce the slopes after each failure, which can produce lower
denudation rates than our model predicts. The landscape model based on scenarios SD and SS provides an
opportunity to examine the decay of landslide frequency and overall denudation rates from landslides
following deglaciation. Both scenarios predict that denudation rates will decay over time scale over time
scales of 100–960 kyr, and the basins in the western Cascades influenced strongly by deglaciation will decay
over 100–480 kyr.

Our estimated response time scale is based on several assumptions and accordingly has uncertainty. As
discussed above, the inclusion of soil production and sediment transport in channels and on hillslopes
would increase the time required to reach time-invariant rates [Baldwin et al., 2003; Gasparini et al., 2007;
Egholm et al., 2013]. Therefore, our response time scale should be viewed as a minimum. The estimated
minimum response time scale is still significantly longer than the times since the last deglaciation
(11–17 kyr) [Porter, 1976] and the time scale of CRN-derived denudation rate measurements (1.1–7.4 kyr).
The CRN-derived denudation rates and simulated denudation rates for 0–5 kyr show comparable values
considering the uncertainties in simulation (1σ, 17%) (Figure 5), which supports our assumption that
CRN-derived denudation rates can be used to calibrate the model parameters of surface processes acting
on the current topography. The longer response time of denudation rates is also consistent with a simple
visual assessment of current topography that still shows features from previous glaciations with 34% of
the area occupied by slopes exceeding 0.5, a commonly observed slope threshold. In addition, the
response time scale is longer than the 25 kyr that is expected from the landslide failure density of
0.4× 10&8m&2 yr&1 with FI> 1. This indicates that postglacial processes may not consume the steep
regions at once and create additional area to fail or continuously denude as the landscape changes over
time. Some areas in Figure 7 sustain high denudation rates over time.

The minimum response time scale of the Cascades is shorter than or comparable to the 500 kyr or longer
response time scale of the deglaciated landscapes in the northwest Himalaya [Hobley et al., 2010]. We
attribute that the potential shorter response time scale is due to our inclusion of stochastic landslides and
the increase in precipitation received by the Cascades (MAP of 2m/yr versus 0.1m /yr in the Tibetan
Himalaya). However, our time scale is much longer than the response time scale of 5–10 kyr expected from
modeling an idealized glacial valley [Dadson and Church, 2005]. The rapid response time of idealized
glacial valley in the Dadson and Church [2005] is due to the use of high landslide denudation rates in the
model (~2.8mm/yr versus ~0.3mm/yr in this study) and smaller basin areas (2 km2 versus 1000 km2 in
this study).

The response time scale of denudation rates from all model scenarios is on the order of or longer than the
dominant 100 kyr glacial and interglacial intervals in the Cascades during the Quaternary [Hays et al.,
1976]. This suggests that the Cascades has not likely reached a steady state condition with postglacial
surface processes during interglacial periods in the Quaternary. This may suggest that frequent changes in
climates and surface processes regimes such as deglaciation events may increase the chemical and
sediment fluxes during interglacial periods in the Quaternary and leave a significant and prolonged impact
on denudation and topography. However, to understand the overall landscape evolution of the Cascades
during the entire Quaternary, future studies are needed that implement successive glacial and interglacial
processes and glacial-isostatic rebound in numerical models [Braun et al., 1999].
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5. Conclusion

In this study, we model postglacial surface processes in the Washington Cascades using a geomorphic-
transport-law-based numerical model that includes river incision, hillslope diffusion, and stochastic
landslide processes. We present a GTL for stochastic landslides using the spatial distribution of slope
instability and a modeled relationship between slope instability and failure probability. Model parameters
of river incision and stochastic landslides are calibrated based on CRN-derived denudation rates using an
exhaustive search method. The uncertainties within model parameters and their covariations are assessed
using a Bayesian probability. The best fit model parameters are consistent with previous studies in
landscapes with similar rock types and climatic conditions. The enhanced postglacial denudation rates in
the western Cascades can be explained by modeling of stochastic landslide processes. Specifically, the
magnitude of denudation rates is mainly determined by failure density and landslide frequency, while the
spatial variation in precipitation sets the distribution of denudation rates.

Using the best fit parameters and current topography as an initial condition, we simulate the evolution of
topography and denudation rates in response to the deglaciation event that perturbs the landscape by
changing the dominant geomorphic process regime. We use a landscape evolution model with stochastic
landslide rules and explore scenarios with different landslide depth configurations. In both scenarios,
landslides denude the steep sidewalls of glacial valley and steep peaks preferentially. As the simulation
progresses, landslides consume the areas with steep slopes in the deglaciated topography. Overall, the
topography and denudation rates decay over time. The expected ranges of decay time scale in basins
must exceed 100–960 kyr in the deglaciated Cascades. The time scales of landscape response after
deglaciation in these scenarios are still longer than the time scale of major glacial and interglacial cycles
(~100 kyr) [Hays et al., 1976]. As such, successive glaciations during the Quaternary in the Cascades may
produce high denudation rates and leave strong topographic imprints that sustain during glacial cycles.
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