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Abstract

Landslide susceptibility estimates are essential for reducing the risk posed by land-

slides to social and economic well-being. However, estimates of landslide suscepti-

bility depend on reliable landslide inventories whose production requires extensive

field or remote sensing efforts. Further, most inventories are not updated through

time and thus may not capture the influence of changes in climate and/or land use.

Inventories based on citizen reports of landslide occurrence, have the potential to

overcome these limitations. Such an inventory can be produced from citizen reports

to a 311-phone and online system, a nationwide database that updates real-time

and records reported landslides location and timing. Whereas this landslide inven-

tory is promising, it has not used for landslide susceptibility analyses and may be

associated with spatial uncertainties and reporting biases. In this study we explore

the use of 311-based landslide inventory for landslide susceptibility estimates in

Pittsburgh, PA, USA, where landslide risk is among the highest in the nation. We

compare the 311-based inventory to field-validated inventories through a multi-

pronged approach that combines field validation of 311-reported landslides, proba-

bilistic analysis of the association between landslides and the underlying topo-

graphic and geologic factors, and spatial filtering. Our results show that:

(a) approximately 70% of the 311-reported landslides are associated with an identi-

fiable landslide in the field; (b) the spatial uncertainty of the 311-reported landslides

is 104 ± 25 m; (c) 311-reported landslides differ from other inventories in that they

are primarily associated with proximity to roads, however, field-correction of

311-reported landslide locations rectifies this anomaly; (d) a simple spatial filter,

scaled by the uncertainty in location as determined from a subset of the 311-data,

can increase the consistency between the 311-reported inventory and field-

validated inventories. These results suggest that 311-based landslide inventories

can improve susceptibility estimates at a relatively low cost and high temporal

resolution.
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1 | INTRODUCTION

Landslides pose a substantial risk to social and economic well-being

that is escalated in areas of high population and infrastructure density

(Cascini et al., 2005; Chaparro, 2020). Landslide inventories of high

quality can improve landslide susceptibility maps and understanding

of landslide mechanisms and thus advance the implementation of safe

land-use planning and prioritization of preventative efforts (Fell et al.,

2008; Leventhal & Kotze, 2008). Landslides typically occur over steep

terrain where gravitational forces translate soil and rock downslope

along weak planes of low frictional resistance (Miao et al., 2001;

Vardoulakis, 2000). Their occurrence depends on factors such as the
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magnitude of topographic slope, soil and rock properties, the inclina-

tion of layered rock units, reinforcement due to roots, and hydrologic

factors that may reduce the frictional-resistance of soil and rock by

increasing pore-pressure (Bogaard & Greco, 2016; Iverson, 2000;

Pfeil-McCullough et al., 2015; Wang & Sassa, 2003). Such factors may

covary in linear and non-linear ways that influence the magnitude and

likelihood of landslide occurrence and make the production of reliable

landslides susceptibility maps a challenging task (Guzzetti et al., 2000;

Marjanovi!c et al., 2011).

Landslide susceptibility maps typically utilize landslide inventories

that require extensive field mapping efforts and/or analysis of high-

resolution remote sensing data. These inventories help identify factors

that are associated with landslide susceptibility (Guzzetti et al., 2000;

Harp et al., 2011; Yilmaz, 2010). Landslides are often influenced by

temporally variable factors (e.g., precipitation, urban expansion, defor-

estation, fires) (Crozier, 2010; Huggel et al., 2012; Meusburger &

Alewell, 2008) and repeated mapping efforts are thus needed to study

the impact of temporal changes in these factors on landslide occur-

rence. However, the extensive cost and effort associated with such

repeated mapping impede the progressive quantification of landslide

susceptibility under changing environmental conditions.

Citizen science enables the public to participate in data collection

to help provide solutions to scientific problems and has become

increasingly popular over the last two decades (Can et al., 2019;

Cieslik et al., 2019; Franzoni & Sauermann, 2014; Juang et al., 2017;

Paul et al., 2019). Citizen science allows for inexpensive collection of

large amounts of data at a rapid rate. However, to obtain data of suffi-

cient quantity and quality, citizen science data must be of both inter-

est to the public and have a standard procedure for which the data is

collected (Can et al., 2019; Juang et al., 2019; Kocaman & Gokceoglu,

2019; Paul et al., 2019). Landslide related citizen science has been

applied through university and government led programs (Juang et al.,

2019; Kocaman & Gokceoglu, 2019; Mirus et al., 2020) and indicated

that the primary improvements needed to this approach are increased

citizen participation and validation of their reports (Cieslik et al., 2019;

Kocaman & Gokceoglu, 2019). With such improvements, citizen sci-

ence may be an optimal path for improving local landslide susceptibil-

ity estimates as well as augmenting global landslide catalogs (Juang

et al., 2019).

A new and publicly available citizen science data source that is

based on a 311-municipal service citizens’ reports system, has the

potential to provide a low-cost and progressively updating landslide

inventory, that will enable progressive evaluation of landslide suscep-

tibility. The 311 data combines a non-emergency phone and online

reporting system where citizens report issues that warrant a response

from county officials. The dataset is updated in real time and is acces-

sible in over 300 cities in the United States and Canada (Choi et al.,

2018; O’Brien, 2016; Schellong & Langenberg, 2007; Schwester et al.,

2009). The 311 system reports a multitude of different categories and

includes landslide locations and the time of their reporting. This data

is thus gathered with a minimal cost and effort and has the potential

to create a progressively updated landslide inventory. This inventory

has not yet been utilized to study landslide occurrence and can poten-

tially improve landslide susceptibility estimates at the national level.

Data-driven approaches for mapping landslide susceptibility typi-

cally rely on landslide inventory data (e.g., location, size, timing, degree

of activity), as well as maps of factors that are related to landslide

occurrence (hereafter termed landslide-related factors) such as topog-

raphy, geology, soil, vegetation, hydrologic properties, so forth.

(Arabameri et al., 2019; B"alteanu et al., 2010; Kamp et al., 2008; San-

toso et al., 2011; Zhao & Chen, 2020). These approaches are divided

into (Yilmaz, 2010; Huang & Zhao, 2018; Reichenbach et al., 2018):

(a) heuristic methods, where expert opinion determines the weighting

of different factors on the relative likelihood (i.e., susceptibility) of

landslide occurrence; (b) physical methods that compute the relative

magnitude of the physical forces that drive and resist landslides, and

identify locations where the conditions for landslide occurrence are

likely attained; and (c) statistical methods rely on a large dataset and

utilize the covariance between landslide-related factors and the occur-

rence of landslides to weight these factors and predict the relative

likelihood of landslides. Heuristic methods are highly subjective and

difficult to reproduce, and physical methods are accurate and repro-

ducible, but require detailed information about soil and hydrologic

properties that can rarely be attained over large areas (Francipane

et al., 2014). Statistical methods, such as conditional probability and

machine learning approaches (Do & Yin, 2018; Pourghasemi et al.,

2012; Yilmaz, 2010), often produce consistent results over large areas

at a high spatial resolution (Komac, 2006). In general, conditional

probability enables simpler interpretation compared to machine learn-

ing methods and produces landslide susceptibility maps of comparable

quality (Goetz et al., 2015; Pradhan & Lee, 2010; Yilmaz, 2010).

This research combines fieldwork, statistical analyses, and com-

parison between different landslide inventories to explore the accu-

racy and applicability of the 311-dataset for landslide susceptibility

estimates. More specifically, we use landslide inventories from Pitts-

burgh, PA, USA, where landslide risk is among the highest in the

nation (Gray et al., 2011; Highland, 2006), to: (a) quantify the spatial

accuracy of landslides reported via the 311 system; (b) compare land-

slide susceptibility estimates based on a 311-based landslide inven-

tory to those based on field-validated landslide inventories; and

(c) use these comparisons to explore procedures for producing reliable

landslide susceptibility maps from a 311-based landslide inventory.

We first present the field area and datasets used in this study, and the

method used to produce landslide susceptibility maps and ranking of

landslide-related factors. We then use the spatial uncertainty associ-

ated with 311-based landslide reports to design a simple filter and test

if it increases the consistency between 311-based susceptibility maps

and those produced from established, field-based landslide invento-

ries. Our results suggest that 311-based landslide inventories can

guide landslide mapping at a low cost and effort and thus can improve

landslide susceptibility estimates.

2 | STUDY AREA AND DATA

Given the large datasets required to study landslide susceptibility we

focus on the city of Pittsburgh in Allegheny County, Pennsylvania

(Figure 1), where multiple landslides are recorded in various datasets.

Pittsburgh has a history of landslide occurrence and is located next to

the Allegheny, Ohio, and Monongahela Rivers (Monongahela means

“falling banks”, in a native language [Staats, 1942], which likely refers

to the geological instability of the surrounding slopes). In this area, the

lithologic, climatic, and topographic characteristics, as well as anthro-

pogenic modifications, cause a generally high susceptibility for
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landslides and increases the risks associated with their effects

(Pomeroy, 1982). The high susceptibility and social awareness for

landslide risk makes Pittsburgh a data rich location for studying land-

slide occurrence and reporting.

There are two established landslide inventories of high spatial

accuracy in Pittsburgh (Table 1). (1) Maps produced by the United

States Geological Survey (USGS) where landslides are mapped as

polygons based on field mapping efforts conducted in the 1970s–

1980s (Briggs et al., 1975; Pomeroy, 1977, 1982; Southwestern Penn-

sylvania Commission, 2017). (2) A landslide map produced by Alle-

gheny County Emergency Services (ACES) for locations that are being

monitored by the county’s department of public works (Allegheny

County Landslide Task Force, 2019). In addition to these established

datasets, Pittsburgh has a publicly available 311-based dataset, where

a relatively large number of landslides is being reported. However, the

uncertainty associated with this data is yet to be determined, and thus

it remains unclear whether it can be utilized to progressively improve

landslide susceptibility estimates. Because landslides are mapped and

digitized as polygons in the USGS dataset, and as point locations in

the ACES and 311-based inventories, we converted polygons to point

locations so that the datasets are consistent. This conversion selects

the highest point within a landslide polygon as the representative

location of this landslide, assuming that it most closely represents the

location of slope failure.

To produce and compare landslide susceptibility maps based on

different landslide inventories we analyzed landslide locations in each

inventory in the context of nine topographic and environmental fac-

tors at these locations. We computed topographic factors (slope, cur-

vature, drainage area, relative location on hillslope, distance from

nearest channel, and aspect) from a 10-m resolution digital elevation

model (DEM) from the National Elevation Database (NED), and the

environmental factors (distance from nearest road, land use, and

stratigraphic group) from Pennsylvania Spatial Data Access (PASDA).

Slope was calculated from the DEM as the magnitude of the gradient

vector and expressed in degrees. Profile curvature was calculated as

the second numerical derivative of the DEM through the MATLAB

based software TopoToolBox (Schmidt et al., 2003; Schwanghart &

Kuhn, 2010). The relative location of the landslide on the hillslope is

the fraction of the landslide elevation relative to the hillslope relief, as

estimated from local relief value over a circular disk with a 200-m

radius (i.e., similar to the length scale of local hillslopes). Lithological

information for Pittsburgh was acquired from a categorical digital

dataset that is based on the map of Berg (1980), and includes five dif-

ferent lithologic groups (Dunkard, Monongahela, Casselman,

Glenshaw, and Allegheny).

3 | METHODS

3.1 | Field validation of reported 311 landslide
locations

To quantify uncertainty in the location and reliability of the

311-landslide inventory, we validated 311 reported landslides

(Figure 1) in May–August 2019. At each site, we recorded the coordi-

nates of the landslide in the field (if such a landslide was identified)

and compared them to the reported coordinates to define the spatial

uncertainty in landslide locations. To cast this spatial uncertainty in

the context of landslide dimensions, we also recorded the spatial

dimensions of each landslide. We then compiled the field-validated

landslides into a new inventory and used these datasets to produce

and compare susceptibility maps based on the: (1) original, non-field-

validated landslide locations, (2) field-corrected landslide locations,

and (3) USGS and ACES inventories (Table 1).

F I GU R E 1 (a) Location of 311 reported landslides overlain on a DEM of the City of Pittsburgh. Inset map shows study area over map of the
United States. (b, c) Field photographs of validated 311 reported landslides [Colour figure can be viewed at wileyonlinelibrary.com]

T AB L E 1 Inventories of landslides and the dates of collection that are located in Pittsburgh, PA, USA provided by, the United States
Geological Survey (USGS), and Allegheny County Emergency Services (ACES)

Inventory USGS (1973 –1982) ACES (2019) 311 (2015–2020)

Number of landslides 110 24 720

Collection method Field mapping Field mapping Citizen reports
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3.2 | Conditional probability analysis

We used a conditional probability approach to produce landslide sus-

ceptibility maps and rank the influence of the different landslide-

related factors (e.g., topography, land use, lithology) on landslide

occurrence (e.g., Chung, 2006; Costanzo & Irigaray, 2020; Ozdemir,

2009; Regmi et al., 2014; Yilmaz et al., 2010). To do so, we divided

each of the m landslide-related factor to n classes that span the range

of values for this factor in the maps of the study area. For each of the

resulting nm factor-class combinations, we then computed the condi-

tional probability Cp:

Cp− j =Nl− j=Np− j ð1Þ

where subscript j is the index of the factor-class combination, and Nl-j

and Np-j are the number of landslides locations and map pixels within

this combination, respectively. A factor-class combination that pro-

duces a relatively high Cp indicates that spatial locations that are char-

acterized by this combination tend to generate a relatively large

number of landslides. To create a landslide susceptibility map, we

assigned the computed values of Cp for each factor-class combination

to all the map pixels associated with this combination. Percentile maps

were produced by normalizing each Cp value by the range of Cp values

and multiplying by 100 (e.g., Figures 2 and 3).

The analysis requires a small number of factor class combinations

relative to the number of landslides so that the number of landslides

in each such combination suffices to minimize the effect of outliers.

We determine the number of factors (m = 5), and of classes in each

factor (n = 5) based on prior studies with similarly sized datasets

(Chung, 2006; Pradhan & Lee, 2010; Pourghasemi et al., 2012).

To define the five classes in each factor while accounting for the

distribution of values in each continuous factor (i.e., non-categorical

factors such as slope, curvature, drainage area), the lower class for

each factor is defined between the minimum to the 5th percentile of

the factor map values for which landslides occur, and the upper class

between the maxima and the 95th percentile of the factor map values

for which landslides occur. The factor values between the 5th and

95th percentiles were divided into three equally spaced classes, thus

resulting in a total of five classes for a factor. We classified categorical

factors (i.e., lithology, land use) according to their mapped categories.

To standardize the comparison between landslide inventories this

classification is based on landslide locations from all the aforemen-

tioned inventories (Table 1).

To identify the five-primary landslide-related factors (m = 5) out

of the nine total factors used, we calculated weighted contrast (Wc)

values (Supporting Information, Tables S1–S4) for each class in each

factor (Schicker & Moon, 2012; Guo et al., 2015).

Wp =
A1

A1 +A2

A3
A3 +A4

, ð2Þ

Wn =
A2

A1 +A2

A4
A3 +A4

, ð3Þ

Wc =Wp−Wn ð4Þ

where Wp represents the weighted positives, Wn the weighted neg-

atives, A1 the number of landslides that fell inside a class, A2 the

number of landslides that fall outside a class, A3 the number of map

pixels that fell inside a class, and A4 the number of map pixels that

fell outside of a class. Weighted contrast values between 0.5–1,

1–2, and > 2 are indicative of moderate, good, and extreme predict-

ability, respectively. Negative values indicate the inverse predication

of a factor class. We used the maximal weighted contrast for each

landslide-related factor to rank the top five factors to be used in

the conditional probability analysis. To test if this ranking is depen-

dent on ranking methodology, we also ranked the factors with an

alternate method that is based on a probabilistic parameter called

frequency-ratio (Lee & Dan, 2005; Pradhan & Lee, 2010; Yilmaz,

F I GU R E 2 Landslide susceptibility maps (10-m resolution) for Pittsburgh, PA, USA: (a) map based on 55 field-corrected 311 landslide
locations; (b) map-based on 77 originally reported 311 landslide locations. The Color bar is based on the percentile of computed conditional
probability values. Black rectangles mark the location of inset maps that show more details [Colour figure can be viewed at wileyonlinelibrary.com]
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2010). This produced similar ranking to that produced with the

weighted contrast approach.

To quantify the predictive power of the conditional probability

(Cp)-based landslide susceptibility maps, we computed receiver oper-

ating characteristic (ROC) curves (Fawcett, 2006, Gorsevski et al.,

2006). These curves evaluate the performance of a binary classifier

system, (i.e., yes/no landslide occurrence), such as the conditional

probability method, by analyzing true-positive and false positive

rates for different discrimination thresholds (i.e., Cp values). In this

context, a map pixel is considered a true positive if it contains a

mapped landslide and is also predicted to contain a landslide for a

given Cp threshold. A pixel is considered a false positive when it

does not contain a landslide but is predicted to contain one for a

given Cp threshold. Similarly, a true negative occurs when a pixel

that does not contain a landslide is predicted not to contain one,

and a false negative occurs when a pixel that contains a landslide is

predicted not to contain one.

ROC analysis is used to evaluate model performance through cal-

culation of the area under the ROC curve (AUC) (Cantarino et al.,

2019; Gorsevski et al., 2006; Pham et al., 2020). ROC-AUC analysis

can be used to rank landslide-related factors by their influence on

model performance, and thus point at commonalities and differences

between landslide inventories and guide further analyses (Pham et al.,

2020). For each landslide inventory, we explored the relative influence

of each landslide-related factor on a model prediction by excluding

one factor at a time from the ROC-AUC analysis (Cantarino et al.,

2019; Gorsevski et al., 2006; Marjanovi!c, 2013; Pham et al., 2020)

and calculating the relative difference [dAUC = 100 × (AUCa −
AUCe)/AUCa] between the AUCs for a model with excluded factor

(AUCe) and that with all five factors (AUCa). We then rank the factors

based on their relative influence on the AUC. To quantify the uncer-

tainty associated with this procedure, we run a bootstrap analysis (n =

1000) where in each iteration we run the aforementioned procedure

while excluding a random subset of 25% of the landslide locations.

We use the 5th and 95th percentiles from these iterations to define

the uncertainty in the AUC difference (Figure 4).

3.3 | Filtration of factor maps

The spatial uncertainty in 311-reported landslide location can cause

erroneous association between landslide-related factors and landslide

occurrence that may cause inaccuracies in landslide susceptibility

maps. To ameliorate this problem, we use a two-dimensional circular

averaging filter. The radius of this filter defines a spatial scale over

which each landslide-related factor is averaged to compute a repre-

sentative value that accounts for the uncertainty in landslide location.

We use the filtered factor maps in the conditional probability proce-

dure to test if filtering increases the similarity (measured through two-

dimensional correlation) between the landslide susceptibility maps

that are produced from the original 77 landslides reported through

the 311 system, and the 55 field-corrected locations of these land-

slides (Figures 5 and 6). We then use a similar procedure to explore

the influence of filtering on the similarity between the entire inven-

tory that is based on the 311-reports (N = 720, non-field corrected)

and the field-based inventory produced by combining the USGS and

ACES inventories (N = 134). We further explore this approach by

applying a range of filter radii to identify the scale that maximizes the

similarity between maps from field-validated and non-field-validated

landslide inventories. Factor classes were generated based on the

F I GU R E 3 A non-filtered landslide susceptibility maps (10-m resolution) created from: (a) ACES and USGS inventories (N = 134); (b) the entire
311 landslide inventory (N = 720); (c) total combined landslide inventories (N = 834) [Colour figure can be viewed at wileyonlinelibrary.com]
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distribution of the combined landslide datasets used in each correla-

tion experiment.

To explore the generality of the filtration approach given the

uncertainty in landslide location, we generated 100 different quasi-

random landslide inventories and used filtration to explore the corre-

lation between the susceptibility maps they produce. The quasi-

random landslide locations (N = 55) were selected within a ring, cen-

tered at each pixel that contains a landslide, whose dimensions are

based on the distribution of measured distances between the

311-reported and field-corrected landslide locations (approximately

60 to 120 m). Each of the 100 landslide inventories is then filtered,

using the filtration procedure described earlier, to generate 100 land-

slide susceptibility maps at each filter diameter. These susceptibility

maps are then compared spatially through correlation with the sus-

ceptibility map that is based on the 311 field-corrected landslide

inventory, and the mean and standard deviation of these 100 correla-

tions are recorded. For consistency, factor classes were generated

based on the distribution of the combined landslide datasets for each

experiment (i.e., the 311 field-corrected and the randomly generated

landslide locations). We conducted this experiment with both six and

five classes per factor to further explore the sensitivity of these

results to the number of classes.

F I GU R E 4 Ranking of landslide-
related factors by their influence on the
AUC for: (a) the field-corrected 311-based
inventory (N = 55); (b) the original
311-reported landslide locations for the
field validated sites (N = 77). NR, nearest
road; S, slope; ASP, aspect; C, profile
curvature; NS, nearest stream [Colour
figure can be viewed at wileyonlinelibrary.
com]

F I GU R E 5 Two-dimensional correlation
values between maps produced with filter radii
from 20 to 240 m in steps of 20 m: (a) Correlation
between susceptibility maps based on the entire
311 (N = 720) and the combined (USGS and
ACES, N = 134) landslide inventories;
(b) Correlation between susceptibility maps based
on the original (N = 77), and the field-corrected (N
= 55) landslide inventories [Colour figure can be
viewed at wileyonlinelibrary.com]
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4 | RESULTS

4.1 | Field validation of 311 landslide locations

Field validation of 311-based citizen reports of landslide locations

quantifies the uncertainty in the reported location of landslides. Out

of 77 field-validated locations, 55 were associated with an identifiable

landslide in the proximity of the reported location. Out of the 22 loca-

tions discarded, seven are duplicate reports of the same landslides.

The mean distance between the reported and field-validated locations

is 104 ± 25 m (uncertainty is one standard deviation, most landslides

occur between 60 to 120 m away from the reported landslide loca-

tion), and the typical size of a field-validated landslide is approximately

5 m × 13 m (Supporting Information, Table S5).

4.2 | Conditional probability analysis

The five highest ranked factors calculated for both the original and

field-adjusted 311 data were similar for both inventories, and include

nearest road, slope, profile curvature, distance to nearest stream, and

aspect. Landslide susceptibility analysis based on the original locations

of the 77,311-reported landslide differ from that based on the

55 field-corrected landslide locations. The differences between the

field-corrected and original inventories are reflected in the spatial pat-

tern of landslide susceptibility (Figures 2 and 3) and the ranking of

landslide-related factors (Figure 4). The two-dimensional correlation

between the susceptibility maps (0.3775, Figures 2 and 5a) reflects

the different susceptibility estimates from these two datasets. The

two inventories also differ in the factor class combination that pro-

duces the highest conditional probability (Cp). The highest Cp based on

the field-corrected 311 inventory, occurs at the following factor-class

combination: slope (25#–35#), nearest road (0–9 m), profile curvature

(0.016–0.1 m−1) nearest stream (144–277 m), and aspect (10#–123#).

In contrast, the highest Cp for the original, non-field-corrected inven-

tory occurs at the following factor-class combination: slope (14#–25#),

profile curvature (−0.011 to −0.002 m−1), nearest stream (10–144 m),

and similar aspect and nearest road to that of the field-corrected

inventory. Similarly, the original and field-corrected inventories also

differ in the magnitude and ranking of the landslide-related factors

(Figure 4).

This is particularly apparent in the magnitude and ranking of

the distance to the nearest road factor (NR, Figure 4), whose influ-

ence on the AUC is meaningfully larger for the original

311-reported locations compared to the field corrected ones

(Figure 4a vs. Figure 4b). This influence of roads on susceptibility

estimates is apparent in Figure 2(b) compared to Figure 2(a). The

range of AUC values for our analyses was 0.82 to 0.94 (Supporting

Information, Table S6).

4.3 | Filtering of DEM and factor maps

The correlation between the susceptibility maps produced from the

field-corrected and original inventories is sensitive to the scale of the

averaging filter applied to the maps of landslide-related factors. Con-

ditional probability analysis based on different filter radii (0–240 m, in

intervals of 20 m, Figure 5), shows that the spatial correlation

F I GU R E 6 Landslide susceptibility maps based on the total 311 landslide inventory (N = 720) demonstrate the effect of filtration with
different filter radii: (a) non-filtered; (b) 80 m; (c) 140 m; (d) 200 m. The color bar is based on the percentile of computed conditional probability
values [Colour figure can be viewed at wileyonlinelibrary.com]
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between the susceptibility maps produced from the field-corrected

and original landslide inventories increases with filter radius

(Figure 5b) up to a maxima at a radius of 140 m, which is slightly larger

than the uncertainty in landslide locations (104 ± 25 m). This trend

repeats when comparing the landslide susceptibility map produced

from the entire 311 inventory (N = 720 non-field-validated landslides,

Table 1, Figure 1) to that produced from a combination of the ACES

and USGS inventories (N = 134 field-validated landslides, Figures 5A

and 6). For these inventories, the maximal correlation is attained at a

filter radius of 100 m (Figure 7). Likewise, the filtering also increases

the similarity in ranking of landslide-related factors (Figure 8). Com-

pared to these inventories, the randomly generated landslide invento-

ries (Figure 5b vs. Figure 9) produces a peak correlation at a similar

filter radius as well as a similar decline in correlation for larger filter

radii. Experiments with six factor classes rather than five show more

ambiguous relations between filter radii and correlation between sus-

ceptibility maps (Supporting Information, Figures S1 and S2).

5 | DISCUSSION

5.1 | Uncertainty in the reported locations of
311 landslides

The field validation quantifies the uncertainty in the reported

311-landslide locations. This uncertainty either reflects inaccurate

locations taken by citizens or inaccuracies in how the 311 system

interprets and outputs reported locations. Given that the spatial inac-

curacy (104 ± 25 m) is meaningfully larger than the typical landslide

size (5 m × 13 m), as well as the DEM resolution used for the suscep-

tibility analysis, this inaccuracy may cause erroneous evaluation of

landslide-related factors and susceptibility estimates (Guzzetti et al.,

2000; Steger et al., 2016). Thus, validation with field or remote sens-

ing products is essential for properly utilizing a 311-based landslide

inventory in such settings. The validation of 55 out of

77,311-reported landslides (71%) suggests that 311-based reports

can efficiently guide landslide mapping efforts that rely on field or

remote sensing techniques, and that this dataset can help produce a

progressively updating landslide inventory at a relatively low effort

and cost.

5.2 | Comparison to previous landslide studies

Our analyses of a 311-based landslide inventory in Pittsburgh are gen-

erally comparable to a previous study (Pomeroy, 1982) of landslides in

Pittsburgh and surrounding counties. For example, Pomeroy (1982)

found that 90% of landslides in the Pittsburgh West quadrangle map

(Pomeroy, 1977) occur on slopes greater than 14#, similar to our

results, where landslides are most likely to occur over slopes of 25# to

35# and 14# to 25#, for the field-corrected and original 311 invento-

ries, respectively. Similarly, our results suggest that landslides are

most like to occur on slopes that primarily face to the northeast, simi-

lar to the findings of Pomeroy (1982). This likely stems from higher

soil saturation and pore pressure on these slopes. North-facing slopes

are exposed to comparably less sunlight and east-facing slopes experi-

ence sunlight in the early mornings, when temperatures are low so

that overall, the drying effect from evapotranspiration is minimized on

northeast-facing slopes (Pomeroy, 1982). Depending on climate, slope

aspect can also influence vegetation density and the associated root

strength of a hillslope (McGuire et al., 2016). Landslides analyzed by

Pomeroy (1977, 1982) are more likely to occur on locations of con-

cave upward profile curvature which is consistent with our analysis of

the entire 311 inventory (i.e., non-field corrected, N = 720). This likely

stems from convergence of water into these concave portions of the

landscape, resulting in increased pore pressure. In contrast, analysis of

the field-corrected 311 and the combined ACES and USGS landslide

inventories, indicate that landslides are more likely in areas of concave

downward profile curvature (Supporting Information, Tables S1–S4).

For the USGS inventory, this difference may be associated with the

conversion from landslide-polygons to the point of highest elevation

within each polygon. For the 311 inventory, where landslides often

occur adjacent to roads, this may reflect the influence of roads on the

profile curvature. The lithologies that are most likely to be associated

with landslides are different between the two studies: the Dunkard

Group in Pomeroy’s study and the Monongahela Group in our study.

F I GU R E 7 Landslide susceptibility maps that have been filtered using a 100-m filter radius that produced a maximal spatial correlation:
(a) map based on the entire 311 landslide inventory; (b) map based on combined (ACES and USGS) inventory. The Lower susceptibility values in
the ACES and USGS map are due to a lesser number of landslides in these datasets compared to the 311-based dataset [Colour figure can be
viewed at wileyonlinelibrary.com]
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This difference is likely due to the Dunkard Group being exposed

mostly outside of Pittsburgh, in neighboring counties that were

included in the USGS landslide inventory but not included in our

study. This is supported by the similarity in ranking of landslide related

factors when comparing the 311 vs. the ACES and USGS inventories

(i.e., as mentioned earlier, the USGS inventory is a digitized version of

the map produced by Pomeroy [1977]), where the USGS data is

clipped to the city limits (Figure 8). Overall, the similarities between

our findings and the results of prior work (Pomeroy, 1977, 1982) sup-

port the value of the 311-based landslide inventory.

Comparisons between the analysis of the 311-landslide inventory

to studies that use similar statistical methods in areas with different

environmental characteristics (Clerici et al., 2002; Dahal et al., 2008;

Pradhan & Lee, 2010; Yilmaz, 2010) reveal both similarities and differ-

ences. Unlike our study, where 311-reported landslides are mapped

as point-locations, these studies rely on field verified landslides that

are mapped as polygon. The studies are similar in that slope,

curvature, and lithology are among the most influential landslide

related factors. Studies that do examine distance to the nearest road

(Pradhan & Lee, 2010; Yilmaz, 2010) also indicate that it is an impor-

tant factor; however, the distance from road at which landslides are

most likely is larger (i.e., 100+ m) than that computed for the total and

field-corrected 311 landslide inventories (0–9 m). This difference is

likely due to the higher road density in Pittsburgh compared to the

other study areas and a potential bias in reporting to the 311 system

where landslides next to roads are more likely to be observed and

reported. Roads can be associated with modification of topography,

changes to near surface hydrology, and formation of groundwater

dams, and thus influence slope stability (Mirus et al., 2007). Aspect

was another meaningful landslide-related factor in all studies, but

whereas Pradhan et al. (2010) indicate that landslides were most likely

on north and north-eastern hillslopes, similar to our findings, other

studies (Dahal et al., 2008; Yilmaz, 2010) indicate that landslide likeli-

hood is higher on south-eastern hillslopes. These differences may

F I GU R E 8 Ranking of landslide-related factors based on the total 311 landslide inventory (N = 720) at filtering steps: (a) 20 m; (b) 80 m;
(c) 140 m; (d) 200 m; (e) influential factors of the combined USGS and ACES inventory with no filtering. Note that higher filter radius for this non-
field validated 311-based landslide inventory (panels A−D), increases the similarity in factor ranking with the non-filtered field based ACES and
USGS combined inventory. NR, nearest road; S, slope; ASP, aspect; C, profile curvature; NS, nearest stream; LITH, lithology [Colour figure can be
viewed at wileyonlinelibrary.com]
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reflect variations in lithology, land use, or climate between study areas

as well as the influence of faults and seismicity (i.e., Yilmaz, 2010).

The AUC values of all studies range from 0.85 to 0.95, pointing at the

high predictability of the conditional probability model. The similarities

between these studies generally supports the usability of a 311-based

landslide inventory for landslide susceptibility mapping.

5.3 | Filtering of factor maps to overcome
uncertainty

Our experiment with a two-dimensional averaging filter generally sug-

gests that the uncertainty in landslide location, as computed through

field validation, can help improve susceptibility maps that are based

on the 311 data. The two-dimensional correlation between the land-

slide susceptibility maps that rely on the original (N = 77) and field val-

idated (N = 55) 311-based inventories, peaks at a filter radius of

140 m (Figure 5b), which is somewhat larger than the scale of the spa-

tial uncertainty in landslide locations (104 ± 25 m). This filter radius

also produces a similar ranking of landslide-related factors between

these two 311-based landslide inventories (Figure 8). This improve-

ment is similar to that shown in Figure 5(A), where a filter radius of

100 m maximizes the two-dimensional correlation between the sus-

ceptibility map that is based on the entire 311-based inventory (N =

720) and the map based on the combined ACES and USGS inventories

(N = 134) (Figure 5A). This suggests that the magnitude of spatial

uncertainty in landslide locations, as measured from a subset of the

311-based inventory, may help scale a filter that reduce the influence

of this uncertainty on susceptibility estimates from the entire dataset.

Our experiment with the quasi-random landslide inventory (Figure 9)

further demonstrates that high correlation values are attained at filter

radii that are similar to the uncertainty in landslide locations. Whereas

larger filter radii can also produce relatively high correlation values

between these maps (Figure 9), they also reduce the effective map

resolution (i.e., they increase the spatial extent of areas with the same

landslide susceptibility, Figure 6), and are thus less preferable.

The filtration results are sensitive to the number of factor classes.

Our experiments with six rather than five factor-classes (Supporting

Information, Figures S1-S2), show ambiguous relation between filter

radius and correlation between susceptibility maps. This may reflect a

larger influence of outliers on susceptibility estimates, that becomes

more pronounced as the number of factor classes increases.

5.4 | Methodological limitations

The results we present are influenced by the limitations of the data

sources and methodology. For example, in the USGS inventory,

landslides are mapped as polygons whereas the 311 data is pro-

vided as a point location. Although we overcome this mismatch in

landslide localization by converting the USGS data to point data

(by using the pixel of highest elevation in the polygon), this conver-

sion is somewhat arbitrary and may influence results. There are also

temporal and spatial difference between inventories, with the

311 and USGS inventories being collected 40–50 years apart, and

the USGS data having larger landslides (at the scale of 10s–100s of

meters) compared to the size of the typical landslides reported by

the 311-based inventory (at the scale of 10 m). There are also limi-

tations associated with the conditional probability model (Yilmaz,

2010), where the results are sensitive to the number of factor clas-

ses being used. In general, the more factors and/or classes that are

added to the analysis, the lesser the statistical significance of the

conditional probability estimates. Previous work has shown (Li &

Chen, 2020; Pham et al., 2018; Yilmaz, 2010) that the usage of

machine learning methods may overcome this obstacle, however,

the robustness of such results for datasets of that scale is yet to be

evaluated and the interpretation of the results is not as straight for-

ward compared to conditional probability.

5.5 | Potential use of 311 data in the future study
of landslides

Changes in weather, in particular precipitation, can meaningfully influ-

ence landslide occurrence (Hsu et al., 2018; Kumar et al., 2019; Ray &

Jacobs, 2007). Whereas this is not addressed in this study. The tem-

poral information in 311-based landslide inventories may be suitable

for examining the influence of precipitation on landslide occurrence.

Similarly, the association between distance to roads (NR, Figures 4

and 7) and landslide occurrence points at the potential influence of

urban development on landslides. The progressive updates to the

311 data can therefore be used to compare between landslide occur-

rence and precipitation data over various timescales, as well as

between landslide occurrence and urban development. Overall, the

public availability of progressively updated 311-data enables such

explorations in different cities, climates, and environmental conditions

across the United States and Canada.

6 | CONCLUSION

Our analysis of landslide inventories in Pittsburgh, PA, USA, suggests

that a landslide inventory that relies on citizen reports to the

F I GU R E 9 Correlation values between susceptibility maps
produced from quasi-random landslide inventories versus the field-
corrected 311 landslide locations. The error bars represent the 95th
and 5th percentiles [Colour figure can be viewed at
wileyonlinelibrary.com]
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311 system can be used to create landslide susceptibility maps that

are consistent with field-validated inventories. Whereas the

311-based inventory is associated with a substantial spatial uncer-

tainty, it can guide targeted field-validation efforts. Our comparison

with field-validated landslide inventories suggests that the spatial

uncertainty computed from a field-validated subset of the

311-inventory can help scale a simple two-dimensional filter that can

reduce the influence of this uncertainty on susceptibility estimates.

Future work can likely utilize the progressive updates to the

311-dataset to explore the temporal covariance between landslide,

precipitation, and urban development, as well as differences in land-

slide patterns across climatic, lithologic, and topographic gradients in

the United States and Canada.
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