
Landslides 

Landslides

DOI 10.1007/s10346-023-02050-6

Original Paper

Received: 23 February 2022 
Accepted: 23 February 2023 
© Springer-Verlag GmbH Germany, 
part of Springer Nature 2023

Tyler Rohan  · Eitan Shelef · Ben Mirus · Tim Coleman 

Prolonged influence of urbanization  
on landslide susceptibility

Abstract Landslides pose a threat to life and infrastructure and 
are influenced by anthropogenic modifications associated with 
land development. These modifications can affect susceptibility to 
landslides, and thus quantifying their influence on landslide occur-
rence can help design sustainable development efforts. Although 
landslide susceptibility has been shown to increase following urban 
expansion, the long-lasting effect of urbanization on landslide 
susceptibility remains largely unquantified. Hence, susceptibility 
maps developed based on inventories from non-urbanized areas 
may incorrectly evaluate the hazard in urbanized areas. To quantify 
this effect, we analyzed a landslide inventory from southwestern 
Pennsylvania, where the pulse of urbanization occurred more than 
a decade before the inventory was created. Using road density as a 
proxy for urbanization, the study area was divided into urbanized 
and non-urbanized areas. Susceptibility patterns were computed 
using statistical analyses of a post-urbanization landslide inventory 
together with maps of topographic, land cover, and geologic factors. 
A pre-urbanization landslide inventory was used as a control. Our 
findings indicate that urbanization has a decades-long effect on 
landslide susceptibility, where urbanized areas are generally more 
susceptible to landslides. In urbanized areas landslides are strongly 
associated with distance from roads and topographic curvature, 
whereas in non-urbanized landslides are strongly associated with 
stratigraphic formation and distance from streams. The consistent 
differences in susceptibility patterns between urbanized and non-
urbanized areas indicate that urbanization has a long-lasting effect 
on landslide susceptibility and that susceptibility estimates should 
be made separately for these different environments to account for 
the persistent influence of urbanization.

Keywords Landslides · Landslide susceptibility · Urbanization · 
Hazard mapping

Introduction
The risk of landslide damage to life and infrastructure makes land-
slide susceptibility and hazard zoning crucial for proper land-use 
planning in urbanized areas. Urbanization, defined as increas-
ing the density of population through urban settlement, is asso-
ciated with deforestation and construction that typically reduce 
vegetation cover and modify hydrology and topography (Tubbs 
1974; Zêzere et al. 1999; Glade 2003; Cascini et al. 2005; Van Den 
Eeckhaut et al. 2007; Papathoma-Koehle and Glade 2013). These 
modifications can alter topography, as well as surface and subsur-
face flow paths, which influence landslide susceptibility (e.g., Mirus 
et al. 2007; BeVille et al. 2010). Thus, quantifying the influence of 
urbanization on landslide occurrence can help guide the design of 
more sustainable infrastructure (Tarolli and Sofia 2016).

Landslide occurrence is governed by gravitational forces that 
transport earth materials downslope (Cruden and Varnes 1996). 
The location of a landslide depends on a multitude of landslide-
related factors such as the magnitude of topographic slope, soil/
rock properties and thicknesses, the inclination of layered rock 
units, reinforcement due to vegetation, and hydrologic factors that 
may reduce the frictional-resistance of soil and rock by increasing 
pore-pressure (Iverson 2000; Wang et al. 2013; Pfeil-McCullough 
et al. 2015; Bogaard and Greco 2016). These landslide-related factors 
may covary in linear and non-linear ways that influence the magni-
tude and likelihood of landslide occurrence. Because urbanization 
modifies some or all these factors, it also affects landslide suscep-
tibility (Johnston et al. 2021).

Landslide susceptibility estimates can be quantitative or quali-
tative. Qualitative estimates use descriptive terms to categorize 
landslide susceptibility levels, whereas quantitative methods rely 
on statistical analyses to estimate probabilities of occurrence for 
landslides (Reichenbach et al. 2018). Statistical methods, such as 
conditional probability and machine learning approaches, can 
account for such non-linearities and produce accurate landslide 
susceptibility estimates over large areas at a high spatial resolution 
(Pourghasemi et al. 2012; Merghadi et al. 2020; Wang et al. 2021). 
These methods typically rely on a large dataset of landslide loca-
tions and utilize the covariance between landslide-related factors 
and the occurrence of landslides to weigh these factors and calcu-
late the relative likelihood of landslide occurrence. The estimated 
likelihoods can be used to spatially map landslide susceptibility 
and guide future development and mitigation efforts (Zhang et al. 
2017; Kim et al. 2018).

Studies that focus on the influence of different factors on land-
slide susceptibility (e.g., Dai and Lee 2002; Rohan et al. 2021; Zhou 
et al. 2020) often explore what geologic, topographic, and land-
use factors affect landslide susceptibility (Glade 2003; Van Beek 
and Van Asch 2004; Wasowski et al. 2010; Chen and Huang 2013; 
Reichenbach et al. 2014; Pisano et al. 2017; Soma et al. 2017; Chen 
et al. 2019; Senanayake et al. 2020; Bernardie et al. 2021). Although 
land-use changes do influence landslide susceptibility, this influ-
ence depends on the local topographic, lithologic, and hydrologic 
conditions as well as on the rate of land-use changes (Soma and 
Kubota 2017; Chen et al. 2019). Previous studies (Braun et al. 2019; 
Simon et al. 2015) indicated that changes in landslide susceptibil-
ity may increase with the rate of urban expansion and depend on 
population and road density. Although landslide susceptibility 
has been shown to generally increase with the degree and rate of 
urbanization, studies have previously used only landslide invento-
ries that were mapped in areas and times of urban expansion and 
thus primarily explored the immediate effect of urbanization on 
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landslide susceptibility (Alexander 1986; Smyth and Royle 2000; 
Sassa et al. 2004; Cascini et al. 2005; Dragićević et al. 2015; Frodella 
et al. 2018; Lee et al. 2018). Hence, the legacy influence of urbaniza-
tion that occurred decades ago on landslide susceptibility remains 
largely unquantified.

A recent review of various national-scale landslide susceptibil-
ity maps reveals that southwestern Pennsylvania is consistently 
among the most susceptible areas in the conterminous United 
States (Mirus et al. 2020). The city of Pittsburgh, located at the heart 
of this region, is particularly susceptible to landslides (Pomeroy 
1982; Ashland 2021). The history of southwestern Pennsylvania con-
tains both periods of extreme population rise and fall. The study 
area encompasses four counties (Allegheny, Beaver, Washington, 
and Westmoreland), which all saw substantial population growth 
during 1890–1950 due to the flourishing local steel and coal-based 
economy. The population stabilized or dropped in each of the coun-
ties with the decline of the steel industry after 1950 (Giarratani and 
Houston 1989). Although the peak population generally occurred in 
the late 1950s, ~ 80% of the population growth occurred before 1940. 
Pittsburgh, the largest urban area in southwestern Pennsylvania, 
currently has a population that is 55.6% smaller than its size in 1950 
(Winant 2021). The pulse of urban expansion in southwestern Penn-
sylvania between the 1890s and 1950s, and the lack of meaningful 
urban expansion since, presents a unique opportunity to explore 
the decades-long effect of urbanization on landslide susceptibility.

This research examines the prolonged influence of urbanization 
on landslide susceptibility by using pre- and post-urbanization land-
slide inventories from southwestern Pennsylvania, with road density 
as a proxy for the spatial and temporal pattern of urbanization. The 
pre-urbanization inventory is used as a control for potential biases 
in landslide mapping and analyses because it is not expected to differ 
between urbanized and non-urbanized areas. The post-urbanization 
inventory is used to quantify the difference in both landslide suscep-
tibility estimates and in landslide-related factors between urbanized 
and non-urbanized areas (classified via road density).

Methods and study area

Study area
This study is focused on a large portion of southwestern Pennsylvania  
that includes Allegheny, Beaver, Washington, and Westmoreland 
Counties, with a combined area of 7993  km2 (Fig. 1A). The area  
is primarily drained by two major rivers, the Allegheny and  
Monongahela, that merge to form the Ohio River at the center of the 
study area in the city of Pittsburgh. Much of the study area is located 
within the Allegheny Plateau section of the Appalachian Plateaus 
province. Bedrock units exposed in the study area are composed 
of horizontally bedded or slightly dipping sedimentary rocks. The 
surficial deposits of the area are primarily composed of sand, shale, 
alluvium, and gravel. Western Pennsylvanian strata are composed of 
cyclic sequences of sandstone, shale, claystone, coal, and limestone. 
Clay- and silt-rich soils overlie the bedrock and can be up to 30 m 
thick at the base of slopes. Stream and river valleys are often steep, 
with a local relief of tens to few hundred meters including steep soil-
mantled slopes, rock/cliff faces, and steep riverbanks (a table of the 
range of local topographic factors is provided in supplementary 
information: Table S2). A large number of prehistoric slope failures 
formed landslide deposits that are common throughout the study area  

(Pomeroy 1982).Southwestern Pennsylvania’s high susceptibility to 
landslides is due to a combination of topographic, climatic, litho-
logic, and anthropogenic factors. Precipitation (both rain and snow) 
is distributed throughout the year with a mean annual precipitation 
of 1006 mm (from 1900 to 2020; National Oceanic and Atmospheric 
Administration and National Centers for Environmental Information 
2021). The majority of high intensity rainstorms associated with the 
triggering landslides occur between the months of June to October 
(Ashland 2021). Lithologic units referred to locally as the Pittsburgh 
“red beds” consist of shales and clay that are particularly susceptible 
for landslides. The urbanization and industrialization of the study 
area were associated with construction of roads, pipelines, railroad, 
extensive coal mining, and commercial and residential properties. 
This modification of the landscape results in decreased vegetation 
and increased impervious cover.

Road density 

Road density, a widely used proxy for urbanization (Zope et al. 2016; 
Theodorou et al. 2021), was used to estimate the extent of urbaniza-
tion and compare landslide susceptibility between urbanized and 
non-urbanized areas. The road density map calculated for this 
study area was generated by computing road density (total road 
length divided by area) over a circular kernel of 300-m diameter 
(~ 3 city blocks). The road density map was divided into urbanized 
and non-urbanized areas by using Gini impurity, a statistical metric 
commonly used in data classification (Archer 2010), to find a road 
density threshold that best classifies the values in the map into 
two groups that we associate with urbanized and non-urbanized 
areas (Fig. 1B). The road-density threshold produced through this 
method (3.3 km/km2) is within the typical range (2.5–6.1 km/km2) 
used in the literature to distinguish between urbanized and non-
urbanized areas (McAdoo et al. 2018). These urbanized and non-
urbanized areas can then be analyzed individually to quantify and 
compare landslide susceptibility as well as rank the importance of 
landslide-related factors between them.

The road density map is based on a digital road map produced 
by the Pennsylvania Division of Computer Services Geographic 
Information Systems Group (Pennsylvania Spatial Data Access 
(PASDA) 2007). Given that urbanization generally halted since 
the era of its peak development (~ late 1950s; Rappaport 2003), we 
assume that the current road map is generally similar to the road 
map at the time of this peak development. To evaluate this assump-
tion, historical road maps ranging from 1947 to 1977 compiled by 
the Pennsylvania Department of Transportation (PennDOT) were 
visually compared with the digital road map from 2015. This inspec-
tion revealed that although some road construction occurred in 
southwestern Pennsylvania since the time of peak development, 
the majority of the construction has been associated with densifi-
cation of previously urbanized areas or conversion of commercial/
industrial zones into residential areas.

Digital elevation data 

The Digital Elevation Model (DEM) used in this study was clipped 
100 m away from the extent of the outermost landslide locations in 
a landslide inventory produced by the US Geologic Survey (USGS) 
and used in this study. The resolution of the DEM used for this 
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study (1/3 arc-second, approximately 10 m) captures the scale of 
the mapped landslides (typically tens to hundreds of meters) and 
landslide-related factors at a resolution that can be efficiently ana-
lyzed. The DEM, obtained from the National Elevation Dataset (U. 
S. Geological Survey EROS Data Center 1999), is a seamless mosaic 
of best-available bare earth elevation data for the conterminous 
United States.

Landslide inventory 

The landslide inventory used in this study is based on landslide 
maps produced by the USGS between the 1970s and 1980s (Briggs 
et al. 1975; Pomeroy 1982). These landslides were mapped as poly-
gons via field reconnaissance combined with interpretation of 
aerial photographs from 1973 to 1975 (scale 1:24,000) (Pomeroy 
1977; Fig. 1C). The landslides are defined as either active or old 
landslides. Active landslides are characterized by recent evidence 
of a landslide motion at the time of mapping and thus likely post-
date the urbanization of the study area (Pomeroy 1977, 1982; Briggs 

et al. 1975). The active landslides are classified as shallow trans-
lational landslides that are typically less than 3 m thick as well 
as slumps of fill material generally associated with construction 
along hillslopes (Pomeroy 1982). The average area of a mapped 
active landslide in the inventory is 0.004  km2 with maximum and 
minimum areas of 0.178  km2 and 0.0001  km2, respectively. Given 
that peak urbanization in the study area occurred during the late 
1950s and that 80% of this urbanization had occurred by the 1940s, 
these active landslides formed or sustained more than a decade 
since urbanization reached its peak and approximately 3 decades 
since 80% of this peak urbanization had already taken place. Old 
landslides are inactive and defined based on hummocky landscape 
and deposits characteristics. They have formed since the Wisconsin 
Glaciation (Pomeroy 1982, and citation therein refer to landslide 
ages of 8.5–10 ka BP in the upper Ohio Valley based on 14C ages) 
and likely predate the urbanization of the study area. The area of 
old landslides is larger than that of active ones (average, maximum, 
and minimum of 0.192, 1.56, and 0.094  km2, respectively) and may 
represent the cumulative area of multiple small landslides that 
occurred over time in proximity to each other. A digitized dataset 

Fig. 1  A Elevation map of the study area overlain by county lines, 
major rivers, cities, and active landslides. B Map of urban (red) and 
non-urban (yellow) areas as separated by road density (threshold 3.3 

km/km2). C An example zoomed in map of a subset of the study area 
showing major rivers and mapped landslides
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of the active landslides is available through the Pennsylvania Spatial 
Data Access (Pennsylvania Spatial Data Access (PASDA) 2017). Old 
landslides were digitized as a part of this study from the aforemen-
tioned USGS landslide maps. To explore the association between 
urbanization and landslide occurrence, the inventory was divided 
into four classes: (1) Active landslides in urbanized areas (i.e., areas 
of high road density, hereafter Active-Urbanized) (N = 1762), (2) 
Active landslides in non-urbanized areas (i.e., areas of low road 
density, hereafter Active-Non-Urbanized) (N = 1581), (3) Old land-
slides in urbanized areas (hereafter Old-Urbanized) (N = 1319), and 
(4) Old landslides in non-urbanized areas (hereafter Old-Non-
Urbanized) (N = 1348).

Landslide‑related factors

To produce and compare landslide susceptibility estimates based 
on the four different landslide inventory classes, the landslides in 
each inventory were analyzed in the context of 11 topographic and 
environmental factors that may be associated with landslide occur-
rence (i.e., landslide-related factors). Seven topographic factors 
(slope, profile curvature, drainage area, relative location on hillslope, 
distance from nearest channel, elevation, and aspect) were computed 
from the aforementioned DEM. Slope was calculated from the DEM 
using an 8-connected neighborhood as the magnitude of the gra-
dient vector and expressed in degrees. Profile curvature (1/meter) 
was calculated as the along-profile divergence of topographic slope 
using TopoToolBox (Schwanghart and Scherler 2014). Relative loca-
tion on hillslope (between 0 and 1) was computed as the fraction 
of elevation relative to the hillslope relief, as estimated from the 
local relief value over a circular disk with a 200-m radius (a typical 
hillslope length in the study area). Aspect is calculated using the 
surface normal to the bicubic interpolation of the digital elevation 
data to identify the downslope direction of a pixel and is measured 
clockwise in azimuth degrees, where 0 and 360 are due north. All the 
topographic factors mentioned above are computed from the afore-
mentioned National Elevation Dataset DEM at a 10-m resolution.

Non-topographic factors (distance to nearest road, stratigraphic 
formation, vegetation cover, land use) relied on various data sources 
and were resampled to the resolution of the DEM. Distance to roads 
was obtained from the same street centerlines used in the road den-
sity calculation that were mapped by Pennsylvania Division of Com-
puter Services Geographic Information Systems Group. Distance to 
roads was computed as the Cartesian distance to the nearest road 
section. Distance to nearest stream was similarly computed using the 
Cartesian distance to the nearest stream, where streams are defined 
as DEM pixels having cumulative upstream drainage area larger 
than 10  km2. Ten different lithologic units were derived from digi-
tal geologic maps (Miles et al. 2001). Vegetation cover, the percent 
of vegetation covering the area of a raster cell, was extracted from 
PASDA based on information collected in 2000. Land-use categories 
rely on photogrammetrically compiled information collected in 2015 
(Yang et al. 2018) and are divided to the following nine classes: open 
water, forest, developed low intensity, developed medium intensity, 
developed high intensity, developed open space, shrub, barren, and 
pasture. The cumulative area of impermeable cover that drains to 
each DEM pixel was calculated using the land-use data in conjunc-
tion with flow accumulation, and was computed using TopoToolBox 
(Schwanghart and Scherler 2014). See supplementary information 

(Table S2) showing the range and mean of all landslide-related fac-
tors. Given that urbanization generally halted since the era of its 
peak development (~ 1950), we assume that current vegetation and 
landcover attributes are generally similar to those at the time of 
landslide mapping (1970s). To facilitate the susceptibility analysis, 
the maps of factors whose resolution differs from the 10-m resolu-
tion of the DEM (stratigraphic formation 125 m, vegetation cover 
30 m, and land-use 50 m) were resampled to a 10-m resolution.

The association between landslides and the topographic and 
non-topographic factors is based on the areal extent of mapped 
landslide polygons. To do so, a binary map of landslide positions 
was produced by assigning a value of 1 for pixels within landslide 
polygons or that overlap with polygon boundaries and a value of 0 
for pixels outside of such polygons. The values of topographic and 
non-topographic factors from all pixels contained within landslides 
are then used in our analysis.

Random forest and ROC validation

We used random forest and conditional probability to map land-
slide susceptibility and to explore the association of landslides with 
the aforementioned 11 factors. Random forest analysis (Hastie et al. 
2009) is based on an assembly of decision trees and can be used to 
make probabilistic predictions and to rank the importance of fac-
tors that are associated with landslide occurrence (Maxwell et al. 
2018). Each decision tree divides the data into more homogenous 
subsets based on a recursive procedure that identifies the factors 
(and associated thresholds) that best divide a target variable data 
(Catani et al. 2013). In the random forest model, every tree is trained 
using a subset of training samples and factors. The randomness 
introduced by subsampling observations and restricting the fac-
tors available at each node leads to less accurate individual trees 
that are less correlated with each other, reducing the variance of 
the ensemble forest (Culter et al. 2007; He et al. 2017), and can be 
used to quantify the probabilistic prediction of each factor. We used 
the randomForest package in R-CRAN with a bagging ensemble 
method (Liaw and Wiener 2002). The length of the input dataset 
is the number of DEM pixels (N = 23,262,133 and N = 33,473,337 
for urbanized and non-urbanized areas, respectively), the target 
variable is landslide occurrence (i.e., binary, based on the USGS 
dataset), and the input variables are the previously mentioned 11 
landslide-related factors. The factors used in the analysis randomly 
vary in each decision tree, with six factors used for each node. To 
handle the imbalance in the input data, each tree was structured to 
subsample 75% of the overall pixels for training, while the remain-
ing 25% (i.e., the out of bag samples) were used for validation. The 
model was trained using 500 trees.

To produce a landslide susceptibility map, the model com-
putes landslide susceptibility in each pixel. Each trained tree 
in the random forest model uses the landslide-related factors 
associated with each pixel to make a binary prediction regarding 
whether the pixel is associated with landslide occurrence. The 
susceptibility of the pixel to landslides is computed as the frac-
tion of positive decisions (i.e., landslide occurrence) that a pixel 
receives from all trees. The susceptibility values can be con-
verted into percentiles based on the range of all the computed 
susceptibility values in the map; hence, pixels of higher per-
centile signify a relatively higher risk of landslide occurrence.
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We used partial dependence analysis to further explore the 
influence of high-ranking continuous landslide-related factors 
on landslide susceptibility. Partial dependence plots show the 
marginal effect of landslide-related factors on the predicted out-
come of the model (Friedman 2001) and thus can display the 
relations between landslide susceptibility and related factors. 
The partial dependence at a particular factor value is computed 
by forcing all data points (i.e., map pixels) to assume that factor 
value while holding the other factors at their original value for 
each pixel and computing the mean susceptibility prediction 
from all trees. This reveals the relations between different factor 
values and landslide susceptibility, and thus provides valuable 
insights into the random forest model predictions.

The performance of the random forest model was evaluated 
through a Receiver Operating Characteristic (ROC) curve and 
calculation of the area under the ROC curve (AUC) (Gorsevski 
et al. 2006; Cantarino et al. 2019; Pham et al. 2020). An ROC 
curve shows the true positive rate against the false positive rate 
at various thresholds. For a given susceptibility threshold, a 
true positive is defined as when the model correctly predicts 
landslide occurrence for a location with a landslide, and a false 
positive is where the model predicts landslide occurrence at a 
location without a landslide. Because landslides are relatively 
isolated phenomena, determination of the rate of true and false 
positives for the ROC curves, rather than their absolute values, 
helps provide a more balanced assessment of the model’s capa-
bility to correctly distinguish between areas of high and low 
landslide susceptibility. The larger the area under this curve 
(AUC), the better the model is at distinguishing between areas 
of high and low landslide susceptibility. Values over 0.8 gener-
ally indicate good model prediction (Robin et al. 2011); values 
between 0.7 and 0.8 are considered fair; values < 0.7 are consid-
ered poor predictions; and values of 0.5 would be the result of 
random guessing (Zhu et al. 2010).

Landslide-related factors were ranked using ROC-AUC analy-
sis by excluding one factor at a time from the random forest 
analysis and computing the relative difference in AUC between 
a model with excluded factor and that with all factors (Gorsevski 
et al. 2006; Marjanović, 2013; Cantarino et al. 2019; Pham et al. 
2020). Important factors are expected to be associated with a 
larger difference. For robustness, to explore whether the results 
are sensitive to the analysis method, we also used a conditional 
probability approach and an out of bag permutation approach 
(Supplementary information: Figs. S1-S2) with identical input 
data to produce landslide susceptibility maps and factor ranking 
(e.g., Davis et al. 2006; Ozdemir 2009; Yilmaz 2010; Regmi et al. 
2014; Costanzo and Irigaray 2020; Rohan et al. 2021).

Landslide susceptibility map comparison

To statistically quantify the effect of urbanization on modeled 
landslide susceptibility estimates, we calculated median suscep-
tibility for the total, urbanized, and non-urbanized area in each 
of the modeled susceptibility maps. The susceptibility difference 
between maps was calculated from the percentage difference 
between these median values (i.e., 100 × |a−b|

(a+b)∕2
 , where a and b are 

the median susceptibilities for the areas of interest in each of the 

modeled susceptibility maps). To test whether the differences in 
median susceptibility estimates are statistically signifi-
cant (� = 0.01) , we used the non-parametric Wilcoxon rank sum 
test that compares susceptibility values between matched-paired 
pixels and modeled susceptibility maps over an area of interest 
(Gibbons and Chakraborti 2014).

To quantify spatial similarities or differences in the distribu-
tion of landslide susceptibility estimates generated from different 
landslide inventories, we calculated cross correlation between the 
modeled susceptibility maps (e.g., Shelef and Hilley 2014; Rohan 
et al. 2021). End member values of 1, − 1, and 0 are indicative of 
perfect, inverse, and no correlation, respectively. This analysis 
focuses on correlation between large-scale susceptibility patterns 
by smoothing each map, before computing the correlation, with 
a circular filter with a radius of 35 m (based on the radius of a 
circle whose area is the same as the average area of all the active 
landslides in the inventory). To further evaluate the difference 
between models, we also compared AUC values when applying a 
model based on an urbanized landslide inventory to that based 
on non-urbanized inventory when applied on the same area.

Results

Ranking of landslide‑related factors 
The ranking of landslide-related factors had differences between 
the models trained on the four different landslide inventory 
classes: (1) Active-urbanized, (2) Active-non-urbanized, (3) Old-
urbanized, and (4) Old-non-urbanized. The rankings computed 
through the AUC approach (Fig. 2) are similar for random forest, 
out of bag permutation, and conditional probability computa-
tions (Supplementary Information: Figure S1). Aside from slope, 
which is ranked as the factor that is most strongly associated 
with landslides, the rankings of the top five factors, as well as 
factors of lower ranking, had variations between models based on 
the different inventories. Comparison between models based on 
the two inventory classes of active landslides (i.e., in urban and 
non-urban areas), whose occurrence likely postdate urbaniza-
tion, shows that in the urbanized (high road density) areas, active 
landslides are strongly associated with distance from roads and 
aspect. In models based on the non-urbanized inventory, active 
landslides are strongly associated with stratigraphic formation, 
distance to streams, and vegetation cover. In contrast, the ranking 
of factors is generally similar for the models based on the two 
inventory classes of old landslides (i.e., in urbanized and non-
urbanized areas) that likely predate urbanization (Slope, Profile 
Curvature, Aspect, and Position on Hillslope being ranked as the 
most important factors).

Landslide susceptibility maps

To explore the effect of urbanization on modeled susceptibility esti-
mates, we compared the susceptibility maps produced by each land-
slide inventory for the entire study area (supplementary informa-
tion: Fig. S3). Figure 3 contrasts such maps for an urbanized section 
of the map both in terms of the spatial pattern and magnitude of 
susceptibility. The contrasting maps produced by models based on 
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the active-urbanized (Fig. 3A) and active-non-urbanized (Fig. 3B) 
inventories show that the susceptibility model that is based on the 
active-non-urbanized inventory produces a smoother susceptibility 
pattern and a relatively high susceptibility at the upper portion of 
the hillslopes compared to the model based on the active-urbanized 
inventory. To explore the effect of time on modeled susceptibil-
ity estimates, we also compare modeled susceptibility maps based 
on inventories of old landslides in urbanized (Fig. 3C) and non-
urbanized (Fig. 3D) areas. The modeled susceptibility based on 
these inventories is characterized by a noisy pattern that reflects 
fluctuation in susceptibility over short spatial distances. In these 
models (Fig. 3C, D), the association between high susceptibility to 
topographic slope is less distinct compared to models based on 
inventories of active landslides (Fig. 3A, B).

Statistical analysis of susceptibility values reveals differences 
between susceptibility maps modeled based on different landslide 
inventories. Comparison of median landslide susceptibility values 
between maps based on urbanized and non-urbanized inventories 
of active landslides can help quantify the effect of urbanization on 
landslide susceptibility. Comparison shows that the median suscep-
tibility value modeled over urbanized areas with the model based on 
the active-urbanized inventory is 16% larger than the median suscep-
tibility calculated by the model based on the active-non-urbanized 
inventory for the same area. For non-urbanized areas, the active-non-
urbanized model median susceptibility is 8% larger than that mod-
eled by the active-urbanized inventory. Comparison between suscep-
tibility values modeled with the active-non-urbanized model to those 

produced by the old-urbanized and old-non-urbanized models can 
help quantify whether active-non-urbanized landslide susceptibil-
ity patterns differ from pre-urbanization patterns. The difference in 
median susceptibility value for such comparisons shows a somewhat 
higher (< 5%) susceptibility in both urbanized and non-urbanized 
areas for the models based on the old landslide inventories. Compari-
son between susceptibility values produced with the old-non-urban-
ized model to those produced with the old-urbanized model can help 
quantify whether areas that are now urbanized were more suscepti-
ble to landslides even prior to urbanization. Such comparison shows 
that the median susceptibility produced by the model based on the 
old-urbanized landslide inventory areas is 4% higher in urbanized 
areas compared to that produced by the old-non-urbanized landslide 
inventory. For each of the comparisons of medians mentioned above, 
a Wilcoxon rank sum test rejects the null hypothesis (⍺ = 0.01) that 
the compared susceptibility estimates come from continuous distri-
butions with equal medians, indicating that the differences between 
these susceptibility maps are statistically significant.

Differences in susceptibility mapping are also apparent in the 
correlations between the smoothed susceptibility maps for the 
entire study area (Table 1). The correlation is 0.2991 between the 
two susceptibility maps produced from the inventories of active 
landslides in urbanized and non-urbanized areas (a subsection of 
these maps is shown Fig. 3A, B, respectively). This value is substan-
tially lower than the correlation value of 0.6552 between the two 
susceptibility maps based on the inventories of old landslides in 
urbanized and non-urbanized areas.  

Fig. 2  Ranking of landslide-related factors by a random forest-based 
AUC differential method for models based on landslide inventories 
of A Active-Urbanized Landslides, B Old-Urbanized Landslides, C 
Active-Non-Urbanized Landslides, and D Old-Non-Urbanized Land-

slides. Factors: Slope, Nearest Road (NR), Profile Curvature (PC), 
Aspect, Stratigraphic Formation (SF), Nearest Stream (NS), Land 
Cover (LC), Vegetation Cover (VC), Drainage Area (DA), Impervious 
Cover (IC), and Position on Hillslope (PoH)
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Partial dependence analysis

To examine the marginal effect of a specific landslide-related 
factor on landslide susceptibility, we used a partial dependence 
analysis based on random forest. Results (Fig. 4) show that the 
models based on the old landslides inventory classes for (a) 
urbanized and (b) non-urbanized areas produced generally 

similar partial dependence relations (apart from the distance 
to nearest road factor). In contrast, the models trained with the 
two active landslide inventory classes for (a) urbanized and (b) 
non-urbanized areas produced different partial dependence rela-
tions for the slope, profile curvature, distance to nearest road, 
and nearest stream factors (Fig. 4), and similar values for the 
aspect factor.

Fig. 3  Landslide susceptibility maps of the same (urbanized) area, 
produced with a random forest models based on: A Active landslides 
in urban areas, B Active landslides in non-urban areas, C Old land-

slides in urban areas, and D Old landslides in non-urban areas. Note 
the difference in susceptibility patterns between these models
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Model validation

The results from the ROC-AUC validation point at differences in 
landslide susceptibility between urbanized and non-urbanized 
areas. Applying the model based on inventory of active landslides 
in urbanized areas to estimate landslide susceptibility in urbanized 
areas produces the highest AUC (0.7942). In contrast, applying this 
model to estimate landslide susceptibility in non-urbanized areas 
produces a much lower AUC (0.6103). Similarly, the model based on 
inventory of non-urban-active landslides produces AUC values of 
0.7942 for non-urbanized areas and 0.6966 for urbanized areas. For 
models based on the old landslide inventories, the AUC values for 
urbanized and non-urbanized areas are all within a narrower range 
of 0.6142–0.6973 (supplementary information: Table S1).

Discussion 

Differences between models based on different inventories
Comparison of factor ranking, susceptibility maps, and partial 
dependence relations between models that are based on different 
landslide inventories quantifies the prolonged effect of urbanization 
on landslide susceptibility. The influence of urbanization on landslide 
occurrence is illustrated by the differences between the two landslide 
susceptibility models based on inventories of active landslides (i.e., 
post-urbanization) from urbanized and non-urbanized areas. These 
differences are quantified by (a) the relatively low spatial correla-
tion between the smoothed landslide susceptibility maps based on 
these two models (correlation of 0.2991, Table 1), (b) the large (16%) 
and statistically significant difference in median susceptibility value 
between the models based on these inventories, (c) the difference in 
factor ranking between the two models (Fig. 2), and (d) differences 
in partial dependence relation for some factors (e.g., slope, Fig. 4). 
The prolonged effect of urbanization on landslides is further sup-
ported by the models based on the inventories of old landslides (i.e., 
pre-urbanization) that produce relatively similar susceptibility maps 
(i.e., correlation of 0.6552, Table 1), factor ranking (Fig. 2), partial 
dependence relations (Fig. 4) for urban and non-urban areas, and 
a relatively small difference in median susceptibility (4%) between 
these areas. These similarities indicate that prior to urbanization, 
landslide susceptibility patterns over the entire study area were 
more similar compared to the patterns portrayed by the inventories 
of active landslides, and therefore indicate that the differences in 
landslide susceptibility between urban and non-urban areas reflect 
the influence of urbanization.

Although topographic slope is widely recognized as a primary 
driver of slope failure, regardless of setting, the difference in fac-
tor ranking between models of active landsides in urbanized and 

non-urbanized areas hints at the contrasting influences on landslide 
susceptibility in these areas. Whereas in non-urbanized areas strati-
graphic formation, distance to nearest stream, and vegetation cover 
are ranked as important factors, in urbanized areas the distance to 
nearest road, profile curvature, and aspect were more influential. 
The influence of distance to streams (dominant in non-urbanized 
areas) and roads (dominant in urbanized areas) on landslide occur-
rence may be akin in that both can induce landslides in their prox-
imity by steepening the lower part of hillslopes through stream ero-
sion and the construction of road cuts, respectively. Roads can also 
disrupt subsurface and surface hydrology and induce landslides 
by changing surface and subsurface flow pathways and increasing 
pore pressure (Mirus et al. 2007). Although foundation soils and 
embankments provide adequate support for the initial construc-
tion of roads, overstressing the embankment or foundation soil 
with additional fill can also result in rotational displacement and 
hillslope failure (Fell et al. 2005). The influence of vegetation cover 
on landslide occurrence likely reflects the effect of root reinforce-
ment (Istanbulluoglu and Bras 2005). In urbanized settings, areas 
of removed vegetation are often covered by impermeable surfaces 
that may reduce infiltration and pore pressure in the underlying 
soil, and thus mitigate the loss of root reinforcement (Lee and Kim 
2016) compared to areas of removed vegetation in non-urbanized 
settings (Glade 2003). This may explain the relative dominance of 
the vegetation cover factor in non-urbanized areas. The difference 
in the influence of stratigraphic formation may be linked to the 
prevalence of a sedimentary unit with numerous “red beds” that 
is particularly prone to landslides (Hamel and Flint 1972; Pomeroy 
1982; Okagbue 1986) in non-urbanized areas (31%) compared to 
urbanized areas (8%). However, stratigraphic formation is ranked 
relatively high (fifth most important factor) even in the active and 
old urbanized landslide inventories, indicating that its influence is 
meaningful even in urbanized settings. Together with topographic 
slope, profile curvature is the only factor that is ranked within 
the four most influential factors in all four inventories, which is 
aligned with the findings of Pomeroy (1982) who noted that the 
majority (~ 60%) of active landslides mapped in the USGS inven-
tory occur on concave slopes. Slope aspect is dominant in models 
based on both urbanized and non-urbanized inventories, likely 
because north-facing slopes are exposed to comparably less sun-
light (Pomeroy 1982). Thus, north-facing slopes may sustain higher 
soil saturation and pore pressure that can increase the likelihood of 
landslide occurrence in both urbanized and non-urbanized areas.

The differences between the calculated susceptibility maps (e.g., 
Fig. 3) are generally aligned with the ranking of factor. A visual com-
parison of Fig. 3A, B together with inspection of the digital geologic 
map used in the analysis shows a strong association between suscep-
tibility and stratigraphic formation in the susceptibility map based 

Table 1  Cross correlation 
values between smoothed 
susceptibility maps for the 
entire study area, as produced 
from random-forest models 
based on each of the landslide 
inventories used in this study

Cross-correlation Active-urban Active-non-urban Old-urban Old-non-urban

Active‑urban 1

Active‑non‑urban 0.2991 1

Old‑urban 0.3146 0.4215 1

Old‑non‑urban 0.3222 0.4032 0.6552 1



Landslides 

on the active-non-urbanized model (Fig. 3B), where higher suscepti-
bility values occur within the “red bed” clay formation that has pre-
viously been highlighted as highly susceptible to landslide (Briggs 
et al. 1975; Gray et al. 2011). After heavy rains, the soil above these “red 
beds” becomes heavy and saturated with water causing the softened 
clay layer to break apart and slide (Pomeroy 1982). The localized fluc-
tuations in susceptibility values in the maps modeled based on the 
old landslide inventories (i.e., the rough patterns in Fig. 3C, D) likely 
reflect the influence of profile curvature, which indeed varies over 
short length scales. The strip of low susceptibility values in Fig. 3D 
aligns with the combined effect of large distance to streams, strati-
graphic formation, and southeastern and eastern aspects, all factors 
that rank highly in the corresponding susceptibility model (Fig. 2D).

The results indicate that urbanization may also influence the 
absolute susceptibility for landslides. Overall, the model based on 
the active-urbanized landslide inventory produced higher median 
landslide susceptibility estimates than the model based on the 
active-non-urbanized inventory (16% difference). The similarity in 
median landslide susceptibility values (< 5%) calculated by models 
based on the active-non-urbanized, old-non-urbanized, and old-
urbanized landslide inventories indicates that, while the urbanized 
areas experienced increased susceptibility over time, the suscepti-
bility remained similar in the non-urban area. These differences 
may reflect an increased susceptibility that stems from landscape 
change associated with urbanization. Given the time span between 
urbanization and landslide mapping, this indicates that landslide 

Fig. 4  Partial dependence plots based on model results for the active and old landslide inventories in urban (green/red) and nonurban (blue/
light blue) areas for key factors
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inventories from non-urbanized areas may underestimate landslide 
susceptibility in urbanized areas even decades after urbanization. 
This inference has major implications for using such inventories to 
plan new urban developments in terrain previously considered of 
“moderate” susceptibility.

The low cross correlation between maps of similar median 
susceptibility (e.g., < 5% difference between median susceptibility 
values calculated by models based on the active-non-urbanized, 
old-non-urbanized, and old-urbanized landslide inventories) and 
rejection of the null hypothesis of the Wilcoxon rank sum test 
for comparisons between these maps indicate that although the 
median susceptibility may be similar, the susceptibility patterns 
differ between models. The higher median susceptibility values in 
urbanized compared to non-urbanized areas when susceptibility is 
calculated using the old-urbanized landslide inventory is an inter-
esting result because it indicates that urbanization preferentially 
occurred in areas that are more susceptible to landslides. Although 
this can be a true pattern that reflects preferential urbanization 
of high slopes surrounding the industrial hubs along major river 
valleys, it can also reflect the bias in landslide mapping or road 
construction (see Sect. "Relations between factors and landslide 
susceptibility" for more discussion).

Roads may introduce a bias in landslide susceptibility mapping. 
In general, the high modeled susceptibility in urbanized areas is 
influenced by the higher number of landslide pixels in the active 
landslide inventory in urbanized areas (2.5%) compared to that in 
non-urbanized areas (0.7%). Although this may reflect a true pat-
tern, it may be biased to some extent by the high density of roads 
in urbanized areas, where roads produce accessibility and expose 
outcrops that can increase the number of mapped landslides. The 
analysis of the old landslide inventory indeed hints at such a bias, 
as it shows a clear association between landslide susceptibility and 
distance to roads (Fig. 4), although the old landslides occurred 
prior to road construction.

The USGS landslide inventory may also be biased by exclu-
sion of small landslides that occurred during peak urbanization 
(1930–1950). Comparing Pomeroy’s old and active landslide poly-
gons with landslide locations and volumes reported by Ackenheil 
(1955), based on landslides that occurred between 1920 and 1954, we 
find that the largest landslides reported by Ackenheil (≥ 1530 cubic 
meters) fall within active landslide polygons mapped by Pomeroy 
(1977). Smaller reported landslides (< 1530 cubic meters) either 
fall outside of the USGS landslide polygons or within polygons of 
old landslides. This difference likely reflects the resolution of the 
USGS mapping effort, as well as the slower healing (i.e., topographic 
smoothing and cover via vegetation growth and sediment trans-
port) of large landslides scarps and deposits compared to small 
ones, such that only large landslides occurring between 1920 and 
1954 were still detectable at the time of their mapping in the 1970s.

Comparison to previous landslide studies

Comparison of our results to studies that examined the influence 
of recent urbanization on landslide susceptibility reveals both simi-
larities and differences. Studies that focused on recent urbaniza-
tion (Dragićević et al. 2015; Simon et al. 2015; Frodella et al. 2018; 
Braun et al. 2019) report similar results to ours in that landslide 

estimates between urbanized and non-urbanized areas have low 
spatial correlation. Our results indicate that, in both urbanized 
and non-urbanized areas within our study area, the influence of 
aspect and stratigraphic formation are higher compared to other 
study areas. These differences do not necessarily reflect a difference 
between prolonged versus immediate influences of urbanization 
on landslides, and they may stem from differences in the analysis 
methodology or from regional differences in climate and strati-
graphic formation that distinguished southwestern Pennsylvania 
from the warmer tropical climates of previous studies. A major dif-
ference between this study and previous studies is the low ranking 
of the land cover factor in all four models, whereas in prior studies 
landcover is typically highly ranked (Kumar and Bhagavanulu 2008; 
Kafy et al. 2017; Pisano et al. 2017; Avila et al. 2021). This may reflect 
the difference between the effect of decades-old urbanization (this 
study) versus recent urbanization (Dragićević et al. 2015; Simon 
et al. 2015; Frodella et al. 2018; Braun et al. 2019) and indicates that 
the relative influence of land cover on landslide susceptibility may 
decrease through time. However, this may also reflect differences 
in environmental and/or climatic conditions and in land-cover cat-
egories between this and previous studies.

Relations between factors and landslide susceptibility

The partial dependence plots provide insights into the relations 
between landslide-related factors and landslide susceptibility. In all 
four models, the susceptibility decreases gradually with increased 
distance to nearest road (Fig. 4). This likely reflects the effect of road 
construction on slope undercutting, soil weight, fill-induced loading, 
and changes to the natural drainage system (Sidle et al. 2006). This 
correlation may also reflect the abundance of roads along narrow 
river valleys, where nearby slopes are highly susceptible for landslides. 
As discussed in Sect. "Differences between models based on different 
Inventories", the association between susceptibility and distance to 
roads in the model based on the inventory of old landslides (Fig. 4) is 
somewhat unexpected because these old landslides likely predate road 
construction. This may be due to a preference for road construction 
over slopes covered with unconsolidated landslide deposits compared 
to bedrock. This association may also stem from a landslide mapping  
bias, where landslides and their deposits are more likely to be 
mapped along road cuts due to ease of access and good exposure. It  
is also possible that another factor that was not investigated in this 
study, but correlates with distance to road, influences the occurrence 
and/or mapping of old landslides. Increased distance to the nearest 
stream is also associated with a gradual decrease in susceptibility 
and increased similarity for the models based on the inventories of 
active landslide (Fig. 4). However, inversely to distance to nearest 
roads, streams are more strongly associated with landslide occur-
rence in the non-urbanized model. Given the low density of roads 
in these non-urbanized areas, streams likely play a more dominant 
role in undercutting the hillslopes compared to urbanized areas 
where undercutting is caused by construction activities. In contrast, 
in the models based on the inventories of old landslides, there is no 
association between landslide susceptibility and distance to stream 
(Fig. 4). This may reflect the difference between the mapped pattern 
of old versus active landslides, where old landslides are often mapped 
as broad features that cover entire hillslopes (so their locations are 
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not influenced by proximity to streams), and active landslides are  
mapped as small-scale, locally defined features whose location is 
influenced by such proximity. Partial dependence plots also reflect the 
association of aspect with landslide susceptibility. The models based 
on the inventories of active landslides show that susceptibility values 
increase in north-facing slopes in both urbanized and non-urbanized 
areas (Fig. 4). This likely reflects the influence of comparably lower 
solar radiation on north-facing slopes (Pomeroy 1982), which may 
sustain higher soil saturation, and pore pressure that overall can 
increase the likelihood of landslide occurrence in both urbanized 
and non-urbanized areas (Running et al. 1987; McGuire et al. 2016). 
In Colorado, landslide mapping demonstrated an entirely different 
relation, where landslides occurred preferentially on south-facing 
slopes (Ebel et al. 2015), which can be attributed to the higher level 
of root-reinforcement on north-facing slopes (McGuire et al. 2016).

The partial dependence plots for slope, based on the inventories 
of active landslides (Fig. 4), show that the slope values associated 
with the highest landslide susceptibility are ~ 15 and ~ 30° in urban-
ized and non-urbanized areas, respectively. This difference is con-
sistent with a recent study by Johnston et al. (2021), showing that 
landslides in urbanized areas occur over lower slope and precipita-
tion conditions, likely due to modification of the natural drainage 
system, loss of vegetation, and increased impermeable cover. This 
is supported by models based on the inventory of old landslides 
(i.e., pre-urbanization), where the slope – landslide susceptibility 
relations are similar between urbanized and non-urbanized areas. 
For profile curvature, the partial dependence plots based on the 
inventories of active landslides show (Fig. 4) an increased suscep-
tibility in areas of both concave (positive) and convex (negative) 
curvatures and a lower susceptibility in flat areas (i.e., where con-
cavity is approximately zero). The highest susceptibility values are 
associated with the largest concave values. This result is aligned 
with the aforementioned findings of Pomeroy (1982) who noted 
that the majority (~ 60%) of active landslides mapped in the USGS 
inventory occur on concave slopes. It also agrees with other studies 
that have found that landslide occurrence is less common where 
the slope is convex (Waltz 1971; Lessing et al. 1976) and likely reflect 
water convergence toward concave slopes that result in increased 
pore pressure and erosion, which may trigger landslides (Vieira and 
Fernandes 2004; Xu et al. 2012). The rise in susceptibility for locali-
ties of convex profile is most pronounced for the active-urbanized 
inventory and may reflect an association between urbanization and 
increased instability of convex profiles.

Data limitations

Although this study systematically quantifies the prolonged effects of 
urbanization on landslide occurrence, its findings are limited by the 
datasets and methods used. Our findings relied on a relatively small 
area in the Appalachian Plateau using limited landslide inventories that 
span one major urbanization phase. Larger multi-temporal landslide 
inventories with more detailed information on landslide occurrence 
during multiple distinct phases of urbanization may help better quan-
tify the role of urbanization on landslide susceptibility. Further, the 
landslides explored in this study were mapped in the 1970s, several 
decades after the major urbanization phase in the study area. Due 
to the age of old landslide deposits, weathering, sediment transport, 
and vegetation growth may smooth and obscure their features, thus 

hampering identification and mapping of old landslides through field 
and remote sensing techniques (Pomeroy 1982). Mapped old landslide 
polygons likely reflect an amalgamation of smaller landslides through 
time leading to overestimation of the size of individual old landslides 
in our inventory. Systematic mapping of recent landslides in this area 
may produce an updated inventory that can quantify additional tem-
poral patterns. The spatial and temporal resolution of the inventories 
and datasets used in this study also precludes investigation of landslide 
responses to local construction efforts within a previously urbanized 
area (e.g., road improvement, new neighborhoods, best-practices in 
landslide mitigation). Landslide inventories of higher spatial and 
temporal resolutions may enable exploration of such responses. Also, 
higher resolution maps of factors that were available at a relatively 
low resolution (e.g., stratigraphic formation, land use, and vegetation 
cover) may improve the robustness of the statistical models. We note 
that the patterns we report may be unique to the conditions of this 
specific study area (e.g., climate, stratigraphic formation, topography, 
construction practices), and studies that explore similar questions 
in different conditions may reveal different patterns. There is also an 
apparent bias of the distance to nearest roads factor, particularly in 
the old landslide susceptibility calculations, where landslide events 
occurred prior to road construction, are associated with distance 
to nearest roads (Fig. 4). Such a bias may stem from the exposure 
and access enabled by roads, which may have resulted in preferred 
mapping of old landslides next to roads. Alternatively, it may reflect 
preferred road construction within the deposits of old landslides. 
Accounting for this bias may help improve susceptibility maps. Finally, 
our analysis does not directly account for the effect of precipitation 
on landslide occurrence (Wasowski 1998; Wasowski and Pisano 2020; 
Ashland 2021). Although precipitation is recognized as an important 
trigger for landslides in southwestern Pennsylvania (Pomeroy 1982; 
Gray et al. 2011; Ashland 2021), its association with the occurrence of 
landslides reported in the USGS inventories we investigate here can-
not be explored due to lack information about the timing of landslide 
occurrence. However, other data sources such as information reported 
by citizens to the 311 system do include such temporal data (Rohan 
et al. 2021), and future studies using these inventories may provide 
new insights into the role of precipitation in landslide occurrence in 
southwestern Pennsylvania. Despite these limitations, our results point 
at systematic and persistent differences in landslide patterns between 
urbanized and non-urbanized areas, even decades after urbanization, 
and indicate that distinguishing between these two environments 
would be beneficial for landslide susceptibility estimates.

Conclusion
Analysis of the prolonged effect of urbanization on landslide sus-
ceptibility estimates indicates long-term effects of urbanization on 
landslide susceptibility. This relies on susceptibility estimates based 
on inventories of active landslides in urbanized and non-urbanized 
areas, which show differences in ranking of landslide-related factors 
between these areas, as well as low spatial correlation of mapped 
susceptibility values between them. This is corroborated by analy-
sis of old, pre-urbanization landslide inventories, used as a control 
dataset, which shows a general similarity between urbanized and 
non-urbanized areas in the ranking of landslide-related factors, as 
well as a relatively high correlation between mapped susceptibility 
patterns, hence indicating that the analysis of active landslide inven-
tories indeed captures the influence of urbanization on landslide 
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susceptibility. Analysis of inventories of active landslides further 
shows that compared to non-urbanized areas, urbanized areas are 
associated with higher susceptibility values, stronger association 
between landslide occurrence and proximity to roads, and more 
likely occurrence of landslides over lower slopes compared to 
non-urbanized areas. Our analysis of old, pre-urbanization land-
slides indicates that the mapping of landslides might be biased by 
proximity to roads and that accounting for this bias in landslide 
susceptibility studies would be beneficial. Despite this bias, the 
consistent differences in susceptibility patterns between urbanized 
and non-urbanized areas indicate that urbanization has a decades-
lasting effect on landslide susceptibility and that landslide suscep-
tibility estimates should be made separately for these two different 
environments.
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