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[1] Flow routing across real or modeled topography determines the modeled discharge
and wetness index and thus plays a central role in predicting surface lowering rate, runoff
generation, likelihood of slope failure, and transition from hillslope to channel forming
processes. In this contribution, we compare commonly used flow-routing rules as well as
a new routing rule, to commonly used benchmarks. We also compare results for different
routing rules using Airborne Laser Swath Mapping (ALSM) topography to explore the
impact of different flow-routing schemes on inferring the generation of saturation
overland flow and the transition between hillslope to channel forming processes, as well as
on location of saturation overland flow. Finally, we examined the impact of flow-routing
and slope-calculation rules on modeled topography produced by Geomorphic Transport
Law (GTL)-based simulations. We found that different rules produce substantive
differences in the structure of the modeled topography and flow patterns over ALSM
data. Our results highlight the impact of flow-routing and slope-calculation rules on
modeled topography, as well as on calculated geomorphic metrics across real landscapes.
As such, studies that use a variety of routing rules to analyze and simulate topography are
necessary to determine those aspects that most strongly depend on a chosen routing rule.
Citation: Shelef, E., and G. E. Hilley (2013), Impact of flow routing on catchment area calculations, slope estimates, and
numerical simulations of landscape development, J. Geophys. Res. Earth Surf., 118, 2105–2123, doi:10.1002/jgrf.20127.

1. Introduction
[2] The routing of mass across landscapes underlies many

hydrological and geomorphological models [Fairfield and
Leymarie, 1991; Tarboton, 1997; Zhou and Liu, 2002].
These models rely on drainage-area-based metrics such as
Total Drainage Area (TDA), and Specific Catchment Area
(SCA) to infer variables such as channel discharge, surface
lowering rate, generation of overland flow, the dominance
of diffusive versus advective processes that shape the land-
scape, and the likelihood of slope failure [Montgomery and
Dietrich, 1994; Refsgaard, 1997; Perron et al., 2008, 2009;
Tucker and Hancock, 2010]. The widespread availability of
Digital Elevation Models (DEMs) has led to the develop-
ment of algorithms that route flows over digital representa-
tions of a landscape and determine the drainage area at each
point [e.g., O’Callaghan and Mark, 1984; Freeman, 1991;
Fairfield and Leymarie, 1991; Quinn et al., 1991; Lea, 1992;
Costa-Cabral and Burges, 1994; Tarboton, 1997; Orlandini
et al., 2003; Qin et al., 2007; Orlandini and Moretti, 2009].
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of this article.
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In these flow-routing rules, the complexity of overland flow
processes is typically simplified by assuming steady uni-
form flow and neglecting inertial and pressure effects, so
that flow is driven exclusively by gravity. Such algorithms
are particularly amenable to operation over regularly gridded
topography, where elevations are sampled at equally spaced
nodes on a rectangular grid.

[3] While desirable for many reasons [e.g., Qin et al.,
2007] the rectangular grid representation of topography
poses challenges to flow routing because the orthogonal grid
direction may be imprinted on the flow’s pathway. This
problem motivated the development of various grid-based
routing rules that attempt to balance efficiency, simplic-
ity, and accuracy in routing flows and calculating basin
areas. Nonetheless, most rules are geometrically inconsistent
in that they describe flows as one-dimensional in plan-
view [Costa-Cabral and Burges, 1994; Moore and Grayson,
1991; Chirico et al., 2005], which is an undesirable out-
come of flow routing into diagonal elements that attempt
to reduce the grid imprint on flow pathways. We attempt
to rectify some of these flow-routing issues by presenting
a new routing rule that operates over a triangular represen-
tation of the gridded data to minimize the impact of the
grid. We then compare outcomes of various flow-routing
rules using standard geometric tests that are modified to cap-
ture the accuracy of drainage area calculations produced by
individual flows. We also compare the impact of different
flow-routing and slope-calculation rules on predicted loca-
tions of geomorphologic process transitions and slope failure
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Figure 1. Different flow-routing rules applied over a nine-cell kernel. In this example the elevation of
the central node is the highest in the kernel, gray-filled elements are those into which flow can be routed,
and arrows point toward the elements into which flow is routed. (a) D4 rule: Flow is routed into the
steepest-descent cell of the four orthogonal cells (i.e., five-cell kernel). (b) D8 rule: Flow is routed into
the steepest-descent cell of the eight surrounding cells. (c) D8frac rule: Flow is routed into all downslope
cells, where the slope to each cell determines the flow partitioning. (d) D1: Flow is routed into one or
two cells that are downslope of the steepest-descent triangular facet. ˛1 and ˛2 are the angles used for
flow partitioning by D1, and the line separating them is oriented in the direction of the facet’s gradient.

occurrence over high resolution ALSM topography. Finally,
we examine the effect of different flow-routing and slope-
calculation rules on the outcomes of landscape evolution
models. We found that these rules leave a significant impact,
both visually and statistically, on numerically simulated sur-
faces and on analysis of ALSM topography. Thus, studies
investigating those landscape metrics that are sensitive to
a chosen flow-routing rule will be necessary to determine
robust measures of landscape attributes.

2. Methods
2.1. Flow Routing
2.1.1. Common Routing Rules

[4] Flow-routing rules typically distribute the drainage
area of a given grid element into a set of neighboring
elements according to some prescribed rule. This rule typ-
ically uses node-to-node slopes to determine the fraction
of the area that is partitioned to each surrounding downs-
lope element. Flow-routing rules are divided into Single
and Multiple Flow Direction rules (SFD and MFD, respec-
tively), which partition flow into one (SFD) or many (MFD)
surrounding cells. We consider four common rules for

partitioning flow (D4, D8, D1, and D8frac i.e., the MFD
method of Freeman [1991]) when evaluating the impact of
flow-routing rules on catchment area calculations and syn-
thetic topography produced through numerical simulations.

[5] D4 is a five-cell kernel method that routes flow to
one of the four cardinal directions based on the steepest
descent (Figure 1a). This method favors convergent flows
along paths aligned with the cardinal grid directions. These
undesired artifacts were somewhat rectified with the devel-
opment of the D8 rule [O’Callaghan and Mark, 1984], in
which flows are routed into the steepest of the eight neigh-
boring downslope cells (Figure 1b). In this case, slopes to
diagonal cells are scaled to account for the longer flow path
in these directions. As with D4, D8 favors convergent flow,
since no flow is distributed between multiple surrounding
cells [Freeman, 1991; Quinn et al., 1991; Tarboton, 1997].

[6] In an attempt to disperse flow across divergent topog-
raphy, Freeman [1991] proposed a nine-cell-kernel MFD
routing rule (hereby referred to as D8frac, Figure 1c) that par-
titions flow into all downslope cells based on their slopes,
according to the rule

Fi =
S p

iPN
i=1 S p

i
, (1)
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Figure 2. Illustration of Dtrig’s subelement topography
formed by eight triangular facets defined by the nine-cell-
kernel nodes (black circles). The node’s elevation values are
printed in black next to each node. Facet boundaries are
marked by dashed lines. Note that the surface extent is lim-
ited to the central cell only so that the only node within this
domain is the element-centered node. Contours and color
scale illustrate the elevation variations within the element,
the rounding of contours adjacent to facet’s boundaries is an
artifact of the contouring algorithm.

where Fi is the fraction of the area routed from a node to the
ith surrounding node, N is the number of downslope cells,
S is the slope from the central node to the ith surrounding
node, and p is a prescribed calibration parameter. p > 1
values favor flow routing into relatively steep surrounding
elements while p < 1 preferentially partitions flow into rel-
atively shallower surrounding elements. Freeman found that
p = 1.1 produced SCA values closest to those expected for
known, simple topographic forms.

[7] Tarboton [1997] developed the D1 rule, a nine-cell-
kernel steepest-descent MFD rule that distributes flow into
one or two elements based on the gradient of the steepest of
eight triangular facets defined by a node and its surrounding
eight neighbors. Each facet is anchored at the central, and
two of the eight neighboring nodes (Figure 1d). The gradi-
ent vector of the steepest of these facets is used to divide
the flow between the outer nodes of this facet according to
the angles (˛1,˛2, Figure 1d) between this gradient vector
and the facet’s bounding legs. In Figure 1d, for example,
the fraction of the central cell drainage area that is parti-
tioned to the node to its right is ˛1

˛1+˛2
. This allows flow to

be partitioned to two surrounding cells in the case that the
gradient orientation does not align with one of the facet’s
bounding legs.
2.1.2. New Flow-Routing Rule

[8] We propose a new flow-routing rule, Dtrig, that allows
flow to be distributed among multiple downslope grid-cells,
while honoring the two-dimensional plan-view geometry of

flows by partitioning them only along orthogonal grid direc-
tions. To accomplish this, we decompose the topography
into a set of triangular facets, whose extent is defined only
within their associated grid cell (Figure 2), but their gradi-
ent is defined based on adjacent grid nodes according to the
D1 rule of Tarboton [1997]. Rather than asserting that the
steepest descent facet dictates flow partitioning, Dtrig explic-
itly describes the internal topography of a grid-cell using a
set of eight triangular facets (Figure 2), and partitions flow
between these facets and those associated with neighboring
grid-cells. In doing so, Dtrig routes flow across the facet’s
and grid-cell’s edges rather than through corners. This is
achieved in two consecutive stages: (1) The topography is
decomposed into a set of triangular facets for which the gra-
dient and mean elevation are calculated (this is done after
pits in the original DEM are filled). (2) The facets are then
ordered by their mean elevation and the drainage area is
progressively added and partitioned from upslope facets to
those progressively lower according to the rule described
below. A record is kept when area is partitioned into facets
across grid-cells so that the drainage area associated with
cells on the orthogonal grid is also progressively calculated
(see pseudocode in the supporting information).

[9] To partition flow between facets, we first define a
coordinate system for each triangular facet such that the cen-
tral node of a nine-cell kernel lies along one of the acute
angles of the isosceles triangular facet, while nodes located
along the cardinal and diagonal grid directions form the
right and acute angles of the facet, respectively. The two
orthogonal legs of the facet define our coordinate directions
labeled Oi and Oj in Figure 3a. The location of the central
node is denoted (x0, y0, z0), the node allocated along the Oi
direction is (x1, y1, z1), and the diagonal node is located at
(x2, y2, z2). Given this geometry, the facet slope in the Oi and Oj,
directions are

gOi =
z0 – z1

x1 – x0
,

gOj =
z1 – z2

y2 – y1
,

(2)

and the facet’s gradient vector is Eg = [gOi, gOj]. Because each
of the surrounding nodes defines an independent set of tri-
angular facets, the facet for each central node extends along
the Oi direction from (x0, y0, z0) to ( x0+x1

2 , y0, z0+z1
2 ) and along

the Oj direction from ( x0+x1
2 , y0, z0+z1

2 ) to ( x0+x1
2 , y0+y2

2 , z0+z2
2 ), as

represented by the gray facet in Figure 3a. As such, the
mean elevation of this facet is Nz = (4z0 + z1 + z2)/6. Next,
flow is partitioned from each facet into surrounding facets
by intersecting a line orientated parallel to Eg with the node
of the facet that allows this line to traverse the facet’s area
(Figure 3). If Eg points toward this node, the intersecting line
delineates the facet’s drainage divide, and area is partitioned
between the neighboring facets according to the subareas
defined by this drainage divide (Figures 3b, 3c). In contrast,
when Eg plunges away from the node, the entire area of the
facet is partitioned through the leg of the triangle opposite to
this node into the adjoining facet (Figures 3d, 3e).

[10] The cumulative area for each facet is calculated by
partitioning flow from the facets with the highest mean ele-
vation into those that are progressively lower. In the context
of routing between grid cells, the conversion from facet-
based to grid cell-based cumulative area can be computed by
summing all the areas partitioned into a grid cell by facets
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Figure 3. Examples of flow partitioning from a triangular facet. (a) A triangular facet, the local coor-
dinates, and the Oi, Oj directions. (b) The case where the line oriented in the direction of Eg intersects node
[x2, y2, z2] and is plunging toward the node. The dashed lines that bound Eg mark the range of orientations
where Eg intersects this node and divides the area of the facet into two triangles. In this case, the facet’s
drainage area is partitioned proportionally to the area of each of the triangles bounded between the facet’s
drainage divide (i.e., the dashed intersecting line) and the facet’s bounding legs. The area is partitioned
into the two facets sharing the bold colored facet legs. (c) Same as Figure 3b, except that Eg is dipping
toward node [x1, y1, z1]. (d) Same as Figure 3b except that Eg is plunging away from node [x2, y2, z2]. (e)
Same as Figure 3d, except that Eg is plunging away from node [x1, y1, z1].

of neighboring cells. This results in routing through only
the orthogonal boundaries of the grid cells; hence, it elimi-
nates the need to distribute flow directly to diagonal nodes
in a DEM.

[11] Special cases of opposing flow between facets, or of
flat facets, arise in rare configurations of node elevations
(these rare configurations occur in < 0.001 of all grid nodes
for the natural and modeled landscapes analyzed). In these
cases, the drainage area of a facet is partitioned into the
lowest of the surrounding facets. Special cases of returning
flows, in which the subgrid resolution of the facets allows
them to be routed into and out of grid elements multiple
times, may over estimate an element’s drainage area. While
such cases did not occur in the analyses we ran, we algo-
rithmically addressed their potential occurrence by tracking
and identifying these cases and subtracting their area con-
tribution when calculating the area of each cell on the
regular grid.

2.2. Comparative Tests for Flow-Routing Rules
[12] Flow-routing rules are traditionally tested over syn-

thetic surfaces where the Total Drainage Area (TDA),
and Specific Catchment Area (SCA) can be calculated
analytically. Typically, outward cones, inward cones, and
tilted planes [O’Callaghan and Mark, 1984; Freeman, 1991;
Fairfield and Leymarie, 1991; Quinn et al., 1991; Lea, 1992;
Costa-Cabral and Burges, 1994; Qin et al., 2007; Tarboton,
1997] are used for this purpose, although other configura-
tions are used in some cases [Zhou and Liu, 2002; Freeman,
1991; Qin et al., 2007]. For the flow-routing rules, the TDA
is simply the area that was routed into a grid cell, and the
SCA is this area divided by the flow width (subjectively
defined here as �x for all routing schemes). The analytical

calculations typically assume that each point in the land-
scape contributes equally to drainage area, so that the SCA
equals r

2 for an outward cone, and (r 2
o –r 2)
2r for an inward cone,

where r is the radius at the point of interest and ro is the
radius of the outer extent of the cone.

[13] We found that standardly used benchmarks that
assume equal area contribution for each element in the
landscape may offset errors in drainage area sourcing
some points with errors from other points (Figure 4). To
detect such errors, we modified these benchmarks to ana-
lyze the performance of flow-routing rules when consider-
ing point sources. When applied over nonplanar surfaces
(e.g., cones), such modified benchmarks can also detect
a dependence between the performance of a flow-routing
rule and the orientation of the topographic gradient. In
the case of the outward facing cone, this was accom-
plished using a finite contributing area source (d A) as
a radial element defined by the angular and radial inter-
vals d� and dr, respectively (Figure 5). The SCA of
areas downslope of d A is thus 1

r
dA
d� . This was compared

with the SCA computed by different flow-routing rules
and different point source orientations to evaluate the
rule’s local accuracy. This comparison was quantified using
the Root Mean Squared (RMS) error of the difference
between SCA produced by each flow-routing method, and
that expected theoretically at each point in the discretized
benchmark. The discordance between the geometry of
cylindrical elements used in the SCA analytical calcula-
tion and the rectangular elements used in numerical flow
routing can introduce errors into SCA estimates. We cal-
culated SCA at radial distance > 60 grid elements to
compare analytical and numerical SCA estimates. At this
radial pixel distance the cylindrical elements are nearly
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Figure 4. (a) Natural log of drainage area (�x2) calculated
with D8frac over an outward facing cone. The contributing
area is sourced at a 10ı wide point source centered around
the white asterisk. Dotted white lines mark the theoreti-
cal boundaries of the influence zone for this point source.
(b) Same as Figure 4a, but only over inward facing cone.
Inset figures show the surface topography of these inward
and outward facing cones. Note the dispersion of flow
beyond the theoretical influence zone of the source (dot-
ted white lines)—when flow-routing rules are benchmarked
using the standard method where all elements have equal
area contribution, dispersion errors from multiple upslope
elements may offset each other so the overall calculated SCA
appears similar to the analytically based expectation. Note
the log-scale color scheme used to highlight the extent of
flow dispersion.

equidimensional and within 2% of the dimensions of
rectangular elements.

[14] We visually compared flow partitioning patterns over
natural surfaces by calculating flow routing from a sin-
gle grid element over a 100 � 100, 2 m resolution ALSM
DEM from the Eel River basin in Northern California Coast
Range, where several ALSM based studies were conducted

[e.g., Passalacqua et al., 2010; Mackey and Roering, 2011;
DeLong et al., 2012]. Additionally, we explored the impact
of flow routing on the spatial transition from advective (e.g.,
channel forming) to diffusive (e.g., soil creep) dominated
portions of the landscape. To do so, we prescribed equal area
contribution to all grid elements and calculated the Péclet
number (Pe) for each grid element [Perron et al., 2008,
2009, 2012]:

Pe =
K(3A)m+1/2

D
, (3)

where K is the bedrock erodibility coefficient, A is the
drainage area, m is the area scaling exponent for the detach-
ment limited erosion rule, and D is the soil diffusion
coefficient.

[15] We also explored the impact of different routing
rules on process thresholds determined by both slope and
drainage area. To do so, we compared the spatial distribu-
tion of grid elements dominated by overland flow processes
(when all elements have the same area contribution), using
the steady state hydrologic model of Dietrich et al. [1992]
and Montgomery and Dietrich [1994]:

A
b
�

T
q

sinˇ, (4)

where b is the unit length of the contour across which the
catchment is draining (here we use b = �x), T is the soil
transmissivity, q is precipitation rate, and ˇ is the slope angle
associated with each grid element and calculated as ˇ =
tan–1 S, where S is the element’s slope whose computation
is described in section 2.3.

2.3. Landscape Development Models
[16] Geomorphic Transport Law (GTL)-based landscape

development models often use rules that parameterize

Figure 5. Illustration of a proposed source distribution that
reveals local errors in flow-routing rules applied to downs-
lope elements. The contributing drainage area d A (dark
gray), starts at a radius of r = rmin, extends over a radius
interval dr, and spans an angle interval d� . The influence
zone used for comparison starts slightly downslope from
rmin + dr (light gray).
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surface lowering or sediment transport rate in terms of catch-
ment area. Thus, the choice of flow-routing rules may affect
the evolution of synthetic landscapes. We studied the impact
of the D4, D8, D8frac, and Dtrig routing rules on the time-
invariant form of landscapes simulated using GTLs. We
uplift the model domain at a constant rate (U) and lower it
by detachment-limited stream incision [Howard and Kerby,
1983; Seidl and Dietrich, 1992; Howard, 1994; Whipple and
Tucker, 1999] and soil diffusion [Howard, 1994; Culling,
1960, 1963, 1965]:

dz
dt

= U – (KAm|rzc|n – Dr2z), (5)

where the left and right terms in the parentheses represent
the combined effect of advective stream incision and dif-
fusive soil creep, respectively [Howard, 1994; Tucker and
Bras, 1998; Dietrich et al., 2003; Perron et al., 2008]. In
equation (5), K is the bedrock erodibility coefficient, A is the
drainage area (here calculated after all pits are filled), m and
n are exponents, rzc is the channel slope, D is the soil diffu-
sion coefficient, and r2z is the Laplacian operator applied to
the surface. The model integrates equation (5) using an 8–9
order explicit, time step adaptive, Runge-Kutta integration
algorithm that ensures error control [Dormand and Prince,
1980; Press et al., 2007]. All models share the same grid size
(Nx = 100, Ny = 100) and dimensions (�x = �y = 5 m),
initial and boundary conditions (periodic along the right and
left boundaries, and constant elevation boundaries along the
top and bottom boundaries), and model duration (6 Myr).
Model parameters were set to the following: U = 1 �
10–4 m yr–1, K = 2 � 10–5 m1–2m yr–1, m = 0.5, n = 1, and
D = 1.4 � 10–3 m2 yr–1.

[17] rzc is calculated downslope in the direction of flow,
and thus the flow-routing rule and the channel slope are
linked. For D8 and D4, rzc is calculated using the elevation
of each cell (zi) and the elevation of the cell into which flow
is routed (zi+1) as

|rzc| =
zi – zi+1

�l
, (6)

where �l = �x,�l =
p

2�x for orthogonal and diagonal
directions, respectively. For D8frac, rzc is computed using a
weighted mean slope:

|rzc| =
1
N

NX
i=1

S p
i , (7)

where S is calculated in the manner described by
equation (6). For Dtrig, we calculate rzc as

|rzc| =
q
NSx

2 + NSy
2, (8)

where NSx and NSy are the slopes in the x and y directions,
respectively, that are averaged over all downslope-facing
facets. For D1, we use |rzc| = |Eg|, where |Eg| is the slope of
the facet of steepest descent.
2.3.1. Comparing Landscapes Modeled by Different
Slope and Routing Rules

[18] We compare steady state elevations between pairs of
simulated landscapes using the correlation coefficient:

Cc =
PNt

i=1 (1zi – N1zi) � (2zi – N2zi)qPNt
i=1 (1zi – N1zi)2 �

qPNt
i=1 (2zi – N2zi)2

, (9)

where 1zi and 2zi are the ith elevation of the last time step of
the two models compared, N1zi and N2zi are the mean elevations
of these two models, and Nt is the total number of elevation
nodes in each model. Cc equals 1 and –1 for perfect corre-
lation and anticorrelation, respectively, and approaches zero
for no correspondence between the two models. In addition
to comparing elevations throughout the steady state model
domain, we compared the distribution of channel segment
lengths and orientations. Segments were identified in the
models by computing the Strahler order of each node in the
modeled topography (Strahler order for models produced by
MFD schemes was calculated with D8) and extracting paths
bounded by junctions with channels of Strahler order � 2.
Lengths of these segments (l) were calculated by tracking
flow between these junctions while orientations were cal-
culated as the mean orientation of the segment. We then
calculated the modulus of the orientation with respect to 90ı
(� ) to measure the deviation of channel orientation from the
grid-imprinted orthogonal directions. Differences in the dis-
tributions of these values between the four linked routing
and slope configurations were measured using a Kruskal-
Wallis test (K-W test, Kruskal and Wallis [1952]) the failure
of which suggests that at least one of the observed distri-
butions was drawn from a distinct distribution. Finally, to
investigate the decoupled influence of the slope and routing
rules on the resulting landscapes, we extract parameters of
interest from the � , l, and elevation values of each of the 16
modeled landscapes produced by all possible area and slope
rule combinations (i.e., four slope rules times four routing
rules). We then evaluate the impact of the flow-routing and
slope-calculation factors with a two-way ANOVA test over
these parameters of interest (each parameter has 16 values,
one for each of the 16 models), where each of these two fac-
tors has four groups corresponding to the four routing and
slope rules we used (i.e., D4, D8, D8frac, and Dtrig). Failure
of this test indicates distinct group means, and suggests that
the factor/s for which the test failed significantly affect/s the
variance in the parameter of interest.

3. Results
3.1. Benchmark Tests
3.1.1. Flow Divergence Benchmark (Outward
Facing Cone)

[19] Figure 6 shows SCA values for a flow divergence
benchmark over an outward facing cone for the section of the
cone bounded between 80�x < r < 195�x. For this bench-
mark, d A is defined by � = 10ı, and dr = 10�x starting at
a distance r = 60�x from the cone center. The cone slope
is dz/dr = –1 and the area into which d A drains, hereafter
termed the influence zone, was compared with theoretical
values starting at distance of 10�x downslope of d A. This
comparison was conducted for cases in which the 10ı angu-
lar interval was centered at orientations of 0ı, 23ı, 45ı from
east. Results illustrate that D4 and D8 tended to focus on
one or two flow paths depending on the angular location of
d A, and show the imprint of the cardinal and diagonal grid
directions. The SCA values calculated using D1, D8frac, and
Dtrig underestimate the true SCA within the theoretical influ-
ence zone. The SCA values for D1 and D8frac decrease more
rapidly with r than those calculated analytically and with
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D4 D8 D∞ D8frac DtrigTheoretical

Figure 6. Plots of SCA (�x) associated with different flow-routing rules (noted at the top of each column
of subfigures) for flows starting at different locations along an outward facing cone of 401�401 elements.
Each row of figures shows results for a 10ı, 10�x long source area, centered at the angle specified in the
leftmost plot of each row.

Dtrig. RMS values show that Dtrig performs comparably to
D1 and D8frac, and that these three methods produce lower
RMS values than D4 and D8 (Figure 7, first column).
3.1.2. Flow Convergence Benchmark (Inward
Facing Cone)

[20] Figure 8 shows the SCA values for a flow conver-
gence benchmark consisting of an inward facing cone for the
section of the cone bounded between 60�x < r < 175�x.
For this benchmark, d A is bounded by an angle of � = 10ı,
and radial interval of dr = 10�x starting at a distance of
185�x from the cone center. The cone slope is dz/dr = 1. We
compared SCA between routing methods and theory within
a zone that starts 10�x downslope of d A. As with the out-
ward cone, this test was conducted for cases in which the 10ı
angular interval is centered at orientations of 0ı, 23ı, 45ı
from east. Results illustrate that D4 tends to inhibit flow con-
vergence until flow paths reach an angle of 45ı from the
cone center. D8 lacks flow convergence along the 45ı direc-
tion, and converges rapidly down the cone’s slope along the
23ı direction. SCA values of D1, D8frac, and Dtrig show con-
tinuously convergent patterns similar to that of the analytical
SCA, with D1 and D8frac slightly underestimating, and Dtrig
overestimating the true SCA. When d A is oriented 0ı, D8frac
is more dispersive then the analytical SCA. RMS values
show that Dtrig performs comparably to D1 and D8frac, and
that these three methods perform better than D4 and D8
(Figure 7, second column).

3.1.3. Flow Direction Benchmark (Tilted Plane)
[21] Figure 9 shows the SCA values for a flow direction

benchmark over a plane of unity slope tilted 0ı, 23ı, 45ı
toward east. For this benchmark d A is 40 cells wide, and
extends nine to 13 cells downslope. RMS values show
that all routing rules perform flawlessly except for D8frac
(Figure 7, third column, first row) when plane is tilted 0ı to
the east. For a plane tilted 23ı, the imprint of the cardinal
and diagonal grid directions is apparent for D8 and D4, while
other rules perform comparably better. For a plane tilted 45ı,
the imprint of the orthogonal grid directions is apparent for
D4 (Figure 7, third column).

3.2. Flow Across Natural Landscapes
[22] Figure 10 illustrates flow routing produced by differ-

ent rules over a DEM located within the Eel River basin. In
this case, flow is sourced from a single grid element. The
log scaling of catchment area in this figure highlights dif-
ferences between SFD and MFD routing rules. SFD rules
produce flows that traverse a single-thread set of downs-
lope elements, while MFD rules distribute flows between
adjacent elements. Downslope of the source element, D4
routes area along a linear segment, while D8 allows flow to
traverse the topography in a way that more closely approxi-
mates downslope flow (Figures 10a, 10b). While most rules
route flow only within the watershed of the source element,
D8frac can partition flow across drainage divides so that a
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Figure 7. Bar plots of the RMS values of the difference between the analytically calculated SCA and
that of the different flow-routing rules (noted at the top of each column of subfigures). RMS values are
based on the SCA values shown in Figures 6, 8, and 9. The angle specified in the leftmost plot of each
row indicates the orientation of the source area (for cones, first and second columns) or the tilt direction
(for a plane, third column).
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Figure 8. Plots of SCA associated with different flow-routing rules (noted at the top of each
column of subfigures) for flows starting at different locations along an inward facing cone of 401 � 401
elements. Each row of figures shows results for a 10ı, 10�x long source area, centered at the angle
specified in the leftmost plot of each row.
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Figure 9. Plots of SCA associated with different flow-routing rules (noted at the top of each
column of subfigures) for flows starting at different locations along a titled plane of 401 � 401 elements.
Each row of figures shows results for a 39 to 40 �x-wide, nine to 13 �x-long, source area over a plane
tilted at the angle specified to the left of the row.

(b) (c)

(d) (e)

(a)

ln(A)

(f)

Figure 10. Plots showing the influence zone of a single grid element (marked by a square) over small
drainages in the Eel River basin. Element area is 2 � 2 m and contour spacing is 6 m. (a) D4 , (b) D8,
(c) D8frac, (d) D1, (e) Dtrig, and (f) elevation values, scale, and delineated divide of an arbitrary element
downslope of the source element (dashed white line). Note the log-scale color scheme used to highlight
the differences in drainage area between routing rules.
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Figure 11. Plots showing the influence zones of five grid elements (marked by squares) over a small
drainage in the Eel River basin. Element area is 2 � 2 m and contour spacing is 6 m. (a) D4 , (b) D8, (c)
D8frac, (d) D1, (e) Dtrig and (f) elevation values and scale.

fraction of the source element drainage area is routed into
neighboring basins (Figure 10c). D1 and Dtrig behave sim-
ilarly to one another; however, the flow partitioned by D1
occupies a slightly larger influence zone than that of Dtrig.
The influence zone of D1 contains more points of zero

contributing area in between areas where flow has been
routed relative to Dtrig. This likely results from the fact that
D1 routes area to only one of the eight facets, which pro-
duces more convergent individual flow paths relative to Dtrig
(Figures 10d, 10e).

(a) (b) (c)

(d) (e) (f)

N

0

5

40m

Figure 12. Plots showing grid elements in which Pe > 1 for K/D = 3.3�10–4 m–2 plotted over contoured
ALSM data for the various routing rules where area is sourced from all grid elements. (a) D4, (b) D8,
(c) D8frac, (d) D1, (e) Dtrig, and (f) super-position of all Pe > 1 elements detected by the different
routing schemes. Elements are colored by the number of routing schemes that predict Pe > 1 within a
particular grid element. Note the correspondence between areas of Pe > 1 and the zones of convergence
in Figure 11.
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(c) (d)
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Figure 13. Plots showing grid elements associated with saturation overland flow (i.e., A
b �

T
q sinˇ) over

contoured ALSM data for (a, c, e) D8 and (b,d,f ) D8frac and for various values of T
q . (Figures 13a, 13b)

T
q = 60 m, (Figures 13c, 13d) T

q = 240 m, and (Figures 13e, 13f ) T
q = 540 m. Note that area is sourced

from all grid elements.

[23] Figure 11 shows the influence zone of five single-
element sources over the same DEM as in Figure 10.
The strong imprint of grid directions characteristic of D4
(Figure 11a) results in parallel flows and inhibited flow con-
vergence relative to D8 (Figure 11b) and the MFD schemes
(Figures 11c–11e). D8frac is associated with wider influence
zone whose points have low drainage area (Figure 11c)
compared to those of D1 and Dtrig (Figures 11d, 11e,
respectively).

[24] We analyzed the influence of flow-routing rules on
the calculated extent of advective (e.g., convergent chan-
nelization) versus diffusive (e.g., dispersive hillslope creep)
processes within the Eel River DEM. To do this, we

calculated the Péclet number (equation (3)) over the DEM
shown in Figures 10 and 11 using a prescribed K

D ratio
(3.3 � 10–4 m–2) and m value (0.5), where A is computed
with different flow-routing rules. We show points in the
landscape at which Pe > 1 in Figure 12 for each of
the flow-routing rules. The reduced flow convergence pro-
duced by D4 restricts Pe > 1 to only large valleys in
this area (Figures 12a, 11a). D8 ameliorates this situation
somewhat, allowing advective processes to dominate in con-
vergent areas that are farther upslope relative to D4 (Figures
12b, 11b). Small, upslope tributaries in which advective pro-
cesses are expected to dominate are also absent when using
D8frac (Figure 12c) due to the dispersion associated with it
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Figure 14. Synthetic, steady state DEMs produced by models using the following sets of slope and
routing rules: (a) D4, (b) D8, (c) D8frac, and (d) Dtrig.

(Figures 4, 11c). However, the reduced dispersion of D1
and Dtrig allows Pe > 1 to exist in upslope, convergent
portions of the landscape (Figures 12d, 12e, 11d, 11e). In
general, MFD methods allow isolated areas of the landscape
to have Pe > 1 because of the fact that flows can disperse and
reconverge downslope depending on the local topography
(Figures 11c–11e).

[25] Differences in dispersion and convergence of flows
produced by different flow-routing methods likely affects
predictions of the extent of Saturation Overland Flow (SOF)
in landscapes using a steady state hydrologic model [Diet-
rich et al., 1992, 1993]. To study the impact of routing rules
on the predicted extent of SOF, we calculated catchment area
across the DEM shown in Figure 10, and used this value
with equation (4) to determine points in the landscape where
SOF is expected to operate (Figures 13, S1). We compare
two end-member routing rules; (D8; Figure 13 a, c, and e,
and D8frac; Figure 13 b, d, and f) using values of T/q = 60 m
(Figure 13 a,b), 240 m (Figure 13 c, d), and 540 m (Figure 13
e, f). The convergence associated with D8 is reflected by
the presence of individual flow-paths along which SOF is
expected to be generated. In contrast, broad areas of conver-
gence are expected to generate SOF in the case of D8frac. In
general, areas of SOF extend to higher areas of the landscape
when using D8 because flow is concentrated along individ-
ual flow paths, rather than being dispersed across broad areas
as is the case for the MFD methods. The existence of iso-
lated elements of overland flow for D8 is due to the inclusion
of slope in equation (4), so that elements of low slope and
high drainage area may generate overland flow. The extent

of landsliding within the landscape shows a similar sensi-
tivity to the routing and slope rules, because the local slope
and the extent of subsurface saturation exerts an important
control on the distribution of landsliding in landscapes (e.g.,
Dietrich et al. [1992]; Montgomery and Dietrich [1994]; see
Figure S2).

3.3. Synthetic Landscapes
[26] Flow-routing and slope-calculation rules determine

catchment area and channel slopes, which serve as inputs
to GTL-based models of landscape development. Thus, we
expect that the choice of flow-routing and slope-calculation
rules may impact the topographic attributes of simulated
topography. We explored these impacts on simulated land-
scapes by integrating equation (5) for a period of time that is
required to reach a steady state topography in which dz/dt = 0
at each point in the model domain [e.g., Howard, 1994].
Identical initial conditions, which consisted of a single real-
ization of random noise, were used for all simulations. This
steady state condition provided a set of topographies that can
be directly compared between flow-routing rules.

[27] Figure 14 shows steady state landscapes generated
by a GTL-based landscape development model based on
equation (5). The models differ in that the value of A and
rzc in equation (5) are calculated with different sets of
flow-routing and slope-calculation rules.
3.3.1. Topography

[28] We observed differences in the relief and channel
patterns within synthetic landscapes produced using differ-
ent flow-routing and slope-calculation rules for identical
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Table 1. Cross-Correlation Values Between Pairs of Modeled
Landscapes Shown in Figure 14

D4 D8 D8frac Dtrig

D4 1.000 0.730 0.787 0.706
D8 1.000 0.853 0.724
D8frac 1.000 0.703
Dtrig 1.000

initial and boundary conditions (Figure 14). D8frac produced
a higher relief landscape than other rules. Landscapes pro-
duced by D8frac and D4 appear less dissected than those
produced by Dtrig and D8. Orthogonal channel directions
are visually more prevalent for landscapes produced by D4
and Dtrig.

[29] We compared elevation values at each point within
the modeled landscape using the cross-correlation values
(Cc; equation (9), results reported in Table 1) between land-
scapes generated using four different flow-routing rules. All
Cc values were higher than 0.7, with values associated with
comparisons with Dtrig being relatively low. The lowest cor-
relation was between the surfaces produced by D8frac and
Dtrig, and the highest one is for those produced by D8frac
and D8.
3.3.2. Channel Metrics

[30] Comparison of elevation values may not capture dif-
ferences in the geometry of channel networks. To quantify
differences in simulated channel geometries, we measured
the deviation of channel orientations from the grid imprinted
orthogonal directions (� ), and report their cumulative

distribution functions (CDFs) in Figure 15. All landscapes
share a step in the CDF at � ' 0ı, indicating that many
segments are oriented N-S or E-W (parallel or perpendicular
to the model’s constant elevation boundary conditions). The
fraction of � ' 0ı is larger for Dtrig, which is consistent with
visual inspection of the modeled landscapes. A large step at
� ' 45ı is apparent in the CDFs of both D8frac and D8, indi-
cating that these rules are associated with a high number of
diagonally oriented segments. The differences between these
distributions are statistically significant based on a K-W test
( p-value = 1.4 � 10–2).

[31] Differences in downslope flow convergence between
the flow-routing rules may cause the length of individual
channel segments to differ between flow-routing methods.
We explored this effect by calculating CDFs of the length
of individual channel segments (l) in each of the simulated
landscapes (Figure 16). Segment length is generally longer
for D4 compared to other rules. The l distributions are statis-
tically different based on a K-W test ( p-value = 1.5 � 10–8).

[32] In the simulated landscapes, the flow-routing and
slope-calculation rules influence the resulting topography.
We explored the relative and absolute impact of these rules
on the model outcomes by creating simulations that used
the 16 possible combinations of the four flow-routing and
slope-calculation rules (Figure S3). The modeled topogra-
phy produced by each of these 16 simulations was then
used to extract and examine CDFs of l and � , (Figures S4,
S5). To further explore the influence of the flow-routing and
slope-calculation factors on different geomorphologic vari-
ables, we used two-way ANOVA tests for these two factors
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Figure 15. CDFs of the modulus of segment orientation relative to 90ı (� ) for modeled landscapes
shown in Figure 14. (a) D4, (b) D8, (c) D8frac, and (d) Dtrig.
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Figure 16. CDFs of segments length (l) for modeled landscapes shown in Figure 14. (a) D4, (b) D8, (c)
D8frac, and (d) Dtrig.

over the following variables: (a) median segment length,
(b) mean segment length, (c) the Poisson parameter (�)
that best fits the Poisson-like segment-length distribution,
(d) the fraction (N�45) of diagonally oriented segments (i.e.,
44ı � � � 46) out of all � measurements, (e) the fraction
(N�90) of orthogonally oriented segments (i.e., 89ı � � �
90ı

S
0ı � � � 1ı) out of all � measurements, and (f )

the topographic relief. For the segment length variables (i.e.,
mean and median segment length and �), the ANOVA test
rejected the null hypothesis (i.e., H0: there is no difference
between mean segment lengths across models, ˛ = 0.05,
Table 2, rows 1–3) for the flow-routing factor, and failed to
reject it for the slope-calculation factor. This suggests that
these segment length variables are influenced mostly by the
flow-routing rule, and that this influence is statistically sig-
nificant. For the flow orientation variables (i.e., N�45, N�90),
however, the test rejected the null hypothesis (˛ = 0.05,
Table 2, rows 4, 5) for both slope-calculation and flow-
routing factors, where the p-values for the slope-calculation
factor are an order-of-magnitude lower than those for the
flow-routing factor. These results suggest that both flow-
routing and slope-calculation rules have significant impact
on these segment orientation variables, and that the impact
of the slope-calculation rule is greater than that of the flow-
routing rule. Finally, we applied the test to the topographic
relief of the modeled landscape. Results show that the null
hypotheses can be rejected for the slope-calculation fac-
tor (˛ = 0.05, Table 2, row 6), but cannot be rejected for
the flow-routing factor. Hence, the slope-calculation rule

significantly impacts topographic relief and has higher influ-
ence on the relief than the flow-routing rule.

4. Discussion
4.1. Advantages and Limitations of Dtrig

[33] Dtrig attempts to route flows in a manner that bal-
ances efficiency, simplicity, and accuracy, while reducing
the imprint of the orthogonal grid directions. In decom-
posing the grid into n � 8 triangular facets, Dtrig achieves
a more realistic description of the routing process at the
expanse of increased complexity and computational bur-
den. This method explicitly depicts interelement topography

Table 2. Statistics of Flow-Routing and Slope-Calculation Rules
Impact on Modeled Landscape Geometrya

Geomorphic Parameters Slope Calculation Flow Routing

Median segment length 1.5� 10–1 5.8� 10–7

Mean segment length 4.4� 10–1 1.1� 10–5

� 2.4� 10–1 1.4� 10–4

N�45 3� 10–3 1.3� 10–2

N�90 8� 10–3 4� 10–2

Topographic relief 5.2� 10–1 4� 10–2

aP-values produced by a two-way ANOVA test that explores the influ-
ence of flow-routing and slope-calculation rules on various geomorphic
parameters. � is the Poisson distribution parameter, N�45 and N�90 are
the fractions of � values that are within 1ı from diagonal and orthogonal
orientations, respectively.
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(Figure 2), and partitions flow through edges, rather than
corners, based on a facet’s drainage divide (Figure 3). Dtrig
enables flow divergence that is common over convex por-
tions of the landscape [Freeman, 1991; Fairfield and Ley-
marie, 1991; Quinn et al., 1991], produces flow patterns that
capture transitions from divergent to convergent topography
(Figure 10), and circumvents the need to route flows through
cell corners [e.g., Costa-Cabral and Burges, 1994; Moore
and Grayson, 1991, Figure 3]. Although Dtrig is advanta-
geous for these reasons, it nonetheless contains artifacts that
arise from the grid decomposition into facets. For exam-
ple, Dtrig partitions area between facets by assuming that all
the incoming area is distributed homogeneously within the
facet. In reality, area that enters the facet on one side of the
facet’s drainage divide should not be distributed across this
divide. Addressing such shortcomings will increase memory
usage and computational requirements and reduce efficiency
and simplicity (such as in the case of the DEAMON rout-
ing rule [Costa-Cabral and Burges, 1994; Tarboton, 1997]).
Nonetheless, comparison benchmarks show that such prob-
lems do not crop up at a frequency that greatly degrades
the rule’s performance, as our study shows that it performs
comparably to other MFD routing rules.

[34] The choice of a slope-calculation rule is influenced
by two potentially exclusive factors; its linkage with a
flow-routing rule and the spatial alignment between a grid
node and the slope associated with it. For example, the
slopes associated with steepest descent routing-rules (i.e.,
D4, D8, D1, section 2.3), are defined midway between the
cell-centered node, and the steepest descent node (or nodes,
in the case of D1), and hence may be inadequate to describe
the slope at the cell-centered node where equations (5) and
(4) are applied. This misalignment between the slope and
node locations can be resolved with a central-difference
slope rule, where the slope at a node is calculated from
the elevation difference between nodes on its opposite sides
[Perron et al., 2008; Burrough and McDonnell, 1998].
However, a central-difference rule disentangles the linkage
between the slope and routing rules, and may introduce arti-
facts such as assigning slope values to nodes located at the
bottom of asymmetric topographic depressions. The slope-
averaging rules such as those used for Dtrig and D8frac (e.g.,
equation (7)) at least maintain the linkage between a slope
and a routing rule.

[35] Choices related to implementation of flow-routing
rules attempt to balance physical realism with simplicity and
efficiency. This sometimes creates situations in which basic
flow geometry or physics is violated at the expense of sim-
plicity and efficiency. For example, D4, D8, and in many
cases D1, route flows into a single downslope surrounding
cell, whereas in reality, flow dispersion is an inevitable com-
ponent of all natural flows. Even when flow is routed into all
downslope elements, such as with D8frac, the partitioning of
flow between downslope elements according to their slope
is an arbitrary choice underlain by the assumption that the
arrangement of the cell’s internal divides is related to those
slopes. These arbitrary assumptions require ad hoc fixes
to reproduce benchmarks: in the case of D8frac, the slope
weighting exponent is set to p = 1.1, which was calibrated
by Freeman [1991] based on comparison with particular
benchmarks. While Dtrig eliminates some of these arbitrary
choices by explicitly defining the internal topography of an

element and its internal divides, as described above, there are
a number of ad hoc choices that we made to reduce the com-
putational burden of this method. Thus, while Dtrig performs
in a similar way to many of the other flow-routing rules,
it probably contains an increment more of physical realism
than other flow-routing rules.

4.2. Benchmarks
[36] The SCA and RMS values calculated for the differ-

ent flow-routing rules are directly affected by the definition
of flow width. For nine-cell-kernel methods, the definition
of flow width is ambiguous for both MFD and SFD rules,
because they imply zero flow width when routing flows
through cell’s corners [Costa-Cabral and Burges, 1994;
Moore and Grayson, 1991; Chirico et al., 2005]. This leads
to subjectivity in the definitions of flow width [Chirico et al.,
2005], where flow-width values range between 0.354�x
[Quinn et al., 1991] and

p
2�x [Costa-Cabral and Burges,

1994; Chirico et al., 2005], and may depend on flow ori-
entation, grid resolution, and the specific rule used [Chirico
et al., 2005]. In light of this ambiguity, our subjective choice
of a constant flow width for all cases (�x) is within the typ-
ical range used, ensures simplicity and consistency between
rules, and is consistent with previous studies that use nine-
cell-kernel methods [Zhang and Montgomery, 1994; Wolock
and G. McCabe Jr, 1995; Chirico et al., 2005].

[37] Benchmark tests show that the geometry of the grid
strongly influences the path of routed flows for the D4 and
D8 rules (Figures 6, 8, 9). In the former case, routing shows
strong preference for the orthogonal directions of the grid,
while a secondary diagonal preference was observed for the
latter rule (Figures 6, 8). In all cases, the performance of the
flow-routing rule varies according to the orientation of the
surface relative to the point source (Figures 6–9), suggest-
ing that the routing rule may interact with complex natural
topographies in ways that may be difficult to anticipate in
advance. Additionally, differences in relative RMS values
for different surface orientations suggest that the choice of
the best-performing routing rule may depend on the local
orientation of the surface.

[38] Differences in the relative performance of flow-
routing rules also arose when the extent of the source area
was varied. In particular, the performance of D8frac improves
relative to other rules as source area dimensions increase
because errors in the distribution of individually generated
flows combine to offset one another in a way that reduces
the overall RMS for the standard benchmark tests. This
is clearly seen when calculating RMS for different angu-
lar spans of the source area for the cone benchmark tests
(Figure 17); as d� increases, the RMS calculated using D8frac
systematically decreases relative to the other routing rules.
Thus, the apparent success of this method may depend on
the empirical calibration of p (equation (1)) to the large d�
benchmarks used by Freeman [1991]. Whether or not D8frac
performs better than the uncalibrated methods over complex
real surfaces is unclear, but D8frac’s improper routing of indi-
vidual flows across real topographies (Figure 10) suggests
that it may not. Flow dispersion produced by D8frac is larger
than that expected theoretically. We found that overestima-
tion of dispersion is also produced by Dtrig and D1 (Figure
S6). Importantly, our results suggest that new flow-routing
rules should be benchmarked against both cumulative SCA
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Figure 17. RMS for varying angular span (d�) for a point source centered at 0ı from east over an
outward facing cone. (a) d�=10ı, (b) d�=45ı, (c) d�=90ı, (d) d�=180ı, (e) d�=360ı. Note the varying
ratios between the RMS values of the different routing schemes. In particular, note the relative decrease
in the RMS of D8frac as the angular span increases.

calculated using a uniform source distribution, as well as
benchmarks that generate flows at a point source to assess a
method’s performance.

4.3. Analysis of Real Landscapes
[39] Our analysis reveals that the choice of flow-routing

rule plays an important role in the calculation of catchment
area, inference of SOF across landscapes, and the predicted
distribution of landslides within real topography. This effect
is especially pronounced in the upland, low-catchment-area
portions of the landscape. The choice of a routing rule for
the analysis of channel systems may depend on the specific
attributes of the digital topographic data being analyzed, and
the objectives of a particular study. For example, MFD rules
such as Dtrig and D1 may capture downslope changes in
channel width, depict zones of subchannel divergence and
convergence (Figures 10d, 10e), and aid in relating spatial
variations in channel geometry to variables such as slope and
drainage area when analyzing high-resolution topographic
data in which channels in the landscape are much wider than
the DEM resolution (i.e., pixel size). SFD rules, on the other
hand, will reduce channels to single-thread features and fail
to capture the full extent of the active channel and surround-
ing floodplains (Figures 10a, 10b). On the other hand, SFD
rules are likely to provide a better description of the chan-
nel network and its properties compared to MFD rules when
the channel is much narrower than the DEM resolution. In
this case, MFD rules may overestimate channel width and
portray unrealistic internal channel geometry.

[40] Inappropriate choice of a flow-routing rule is not
the only error source in hydrologic analysis over DEMs.
For example, drainage area computation is also sensitive to
errors in landscape elevation that stem from the acquisition

and processing involved in DEMs production. When land-
scape slopes are low with respect to elevation errors, these
errors may cause routing inaccuracies that may exceed those
that stem from an inappropriate choice of a flow-routing rule.

[41] In analyzing channel networks, MFD rules obfus-
cate measurement of some channel metrics. Measuring flow
length, for example, is ambiguous in these schemes because
of the nonuniqueness of the flow path from a particular
source to its downslope destination. This introduces diffi-
culties in calculating length-dependent parameters such as
sinuosity or Péclet number. Further, the recursive algorithms
that are commonly used in defining drainage extent over
DEMs [Band, 1986; McCormack et al., 1993] are greatly
complicated when conducted with MFD schemes, and may
lead to unrealistic outcomes for schemes such as D8frac,
which can route flow across drainage divides (Figure 10c).

[42] We found that routing rules may have significant
impact on the analysis of process transitions across DEMs.
In particular, the way in which flow is routed over hillslopes
affects the delineation of areas dominated by fluvial pro-
cesses. The topographic transition between a divergent hill-
slope and a convergent channel is reflected by Dtrig and D1
as a shift from dispersive to convergent flows (Figures 10d,
10e). In contrast, this transition is not reflected by the single
thread channels produced by D4 and D8 (Figures 10a, 10b),
and is masked by D8frac because of its tendency to dis-
perse flow broadly across landscapes (Figure 10c). These
differences affect the spatial extent of grid elements dom-
inated by advective processes (i.e., Pe > 1, equation (3)).
For example, the convergence associated with D8 results
in localized upslope expansion of advection-dominated por-
tions of the landscape (Figure 12b) as compared to its extent
calculated using a dispersive method like D8frac (Figure 12c).
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The differences in routing are also manifest by the extent
of SOF predicted within digital landscapes, which, in some
cases, is limited to specific locations that are determined
by the flow-routing rule, the slope-calculation rule, and the
value of T

q (equation (4), Figure 13). Similar sensitivity to
routing rule is apparent when analyzing the extent of land-
scapes amenable to slope failure (Figure S2). We suspect that
MFD-based rules provide more realistic estimates of the dis-
tribution of subsurface saturation, and the transition between
advective and diffusive processes in landscapes when topo-
graphic data are of sufficient resolution to image hillslope
portions of the landscape.

4.4. Impact of Flow-Routing and Slope-Calculation
Rules on Numerical Models

[43] Interestingly, both qualitative and quantitative prop-
erties of topography produced by GTL-based simulations
depend on flow-routing and slope-calculation rules. In par-
ticular, these rules affect the relief structure of the modeled
landscape (Figures 14, S3). The higher relief produced by
D8frac, for example, is mainly an outcome of the slope-
calculation rule associated with D8frac (equation (7), Figure
S3, Table 2), in which the channel slope is calculated through
averaging the slopes to surrounding cells. Such averaging
reduces the calculated slope compared to steepest descent
and/or facet-based rules. Hence, steady state landscapes pro-
duced using D8frac require the down-facing slopes of each
element to increase relative to models that use a steepest
descent approach. Thus, the slope averaging produced by
D8frac requires steeper slopes compared to other methods
when topographic steepness causes erosion to balance uplift
everywhere in the model domain.

[44] We found that the extent of diffusive versus advective
processes calculated across a landscape depended, to some
degree, on the routing rule chosen in the simulation. For
example, the relatively undissected landscape formed by D4
and D8frac (Figure 14), is largely an outcome of the lack of
convergence associated with these schemes, either due to the
grid imprint (D4, Figure 11a), or to the widespread distribu-
tion of flow across the landscape (D8frac, Figure 11c). This
results in expansion of the diffusive portion of the landscape
and in lesser dissection. Because the spacing of channel
junctions is dependent on the hillslope extent [Horton, 1945;
Perron et al., 2009], this relative hillslope expansion is
also reflected in the longer channel segments associated
with these two schemes (Figure 16). This may also affect
segment orientation due to interactions between orientation
and length. For example, the surprisingly small number of
N-S and E-W oriented segments produced by the D4 flow-
routing-based models (Figure S5, left column) is likely due
to the variety of orientations enabled by longer segments.

[45] The fact that almost every metric we investigated was
statistically distinct between simulations (despite identical
initial and boundary conditions used in the models, Table 2)
suggests that artifacts arising from flow-routing and slope-
calculation rules may be imprinted on numerical simula-
tions. While the topographic variations that arise from using
different flow-routing and slope-calculation rules may be
smaller than errors introduced by the incomplete representa-
tion of natural processes by GTLs, these GTLs are currently
the primary tool in predicting landscape response to external
forcing. As such, it seems prudent to carry out further studies

that more fully quantify the impacts of various routing and
slope calculation rules. Additionally, modeling studies that
seek to compare properties of simulated and real landscapes
would benefit from a systematic exploration of the effect of
flow-routing and slope-calculation rules on this comparison.
We suspect that many landscape metrics may be insensitive
to the flow-routing rule used, but the only way to be sure of
this is to use multiple simulations that explore the impact of
the chosen rule set on the quantities under investigation.

[46] Routing and slope rules may also affect the numerical
stability of landscape development models. D1, for exam-
ple, required exceedingly small time steps to maintain the
error tolerance we prescribed for the adaptive time step inte-
gration [Dormand and Prince, 1980; Press et al., 2007]. This
likely results from abrupt changes in a cell’s drainage area
and/or slope that arise when using this rule. These small time
steps caused difficulties in achieving a steady state topogra-
phy in a realistic time frame and forced us to exclude the D1
rule from our analysis of modeled landscapes. The computa-
tional cost that arises from those is far greater than the cost
due to the n � 8 facets used by Dtrig.

[47] Landscapes simulated using different flow-routing
rules should also differ in their response to elevation pertur-
bations (in the context of both Smith and Bretherton [1972]
and Perron et al. [2012]). Flows routed by steepest descent
rules such as D4, D8, and D1 are unlikely to be diverted by
a perturbation that causes a small slope change relative to the
steepest descent slope. In contrast, flows routed by rules that
partition flow to all downslope cells, such as D8frac and Dtrig,
will be diverted by such perturbations. Hence, the sensitiv-
ity to perturbations of simulations that use D8frac and Dtrig,
is higher than that of models using D4, D8, and D1. This
conceptual prediction is in accordance with the results of
Pelletier [2004], where D8frac-based landscape development
models do not reach the ideal steady state static topography
attained by steepest-descent rules.

4.5. Recommendations
[48] This work indicates that flow-routing rules, in some

cases, can importantly impact the results of topographic
analyses and numerical simulations of landscape develop-
ment. Based on these results, we put forth the following
recommendations for future studies that attempt to analyze
digital topographic data and simulate landscapes using GTL-
based rule sets: (A) When calculating specific topographic
metrics over real or modeled landscapes, we recommend
using a variety of routing rules to compute these metrics to
determine their sensitivity to different routing rules. (B) All
routing rules contain some element of arbitrariness. As we
showed, the properties of a given routing rule may cause it
to provide accurate estimates of contributing area and slope
in some portions of the landscape, while producing artifac-
tual results in other areas. Additionally, the SFD routing
rules likely provide a better representation of channel prop-
erties imaged by coarse-resolution DEMs than do the MFD
rules. Thus, the appropriate choice of flow-routing rule will
depend on the resolution of the topographic data set (or
model domain), and the properties of the landscape that one
wishes to capture in the analysis or simulation. Comparison
of different flow-routing schemes against field survey data
may aid in making this choice. (C) Both channel slope and
contributing area calculations may depend on the choice of
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a flow-routing rule, and so we recommend considering the
impact of both when selecting or formulating an appropriate
rule.

[49] Second, our results highlight the fact that land-
scape development models should be constructed in a way
that allows easy substitution of flow-routing and slope-
calculation rules to examine their impact on simulated
topography. We have shown that, at least in DEMs represent-
ing real topography, the extent of advective versus diffusive
portions of the landscape may depend to some degree on
the flow-routing scheme that is selected. Additionally, the
extent of SOF and landslides may depend on the rule chosen
as well. These choices thus plausibly affect hazard esti-
mations based on topographic data [Dietrich et al., 1992;
Montgomery and Dietrich, 1994; Borga et al., 1998;
Claessens et al., 2005], as well as theoretical studies that,
for example, link the extent of advection and diffusion in
landscapes to macroscale features of simulated topography
[e.g., Perron et al., 2008, 2009, 2012]. One might conjec-
ture that the spatial distribution of these factors may also be
impacted by routing and slope rules used to simulate topog-
raphy given the sensitivity of modeled topographic attributes
to these rules.

5. Summary
[50] Flow routing across topography determines drainage

area. This study benchmarks common routing rules, as well
as a new rule, using a modified, point-source benchmark
method that reveals misestimations of SCA that are masked
when using standard benchmarks. The new routing rule
we propose, Dtrig, performs comparably to commonly used
rules and is advantageous in that it explicitly addresses the
internal topography of grid elements and preserves the two-
dimensional plan-view geometry of flows. Nonetheless, the
grid decomposition associated with this rule may introduce
artifacts such as opposing flows. We also explore the effect
of routing rules on flow over ALSM-derived topography
and show that the choice of a flow-routing rule impacts
metrics that predict, for example, the extent of advective ver-
sus diffusive processes in a landscape (Péclet number), the
extent of SOF, and the extent of shallow landsliding. Finally,
we examined the impact of flow-routing rules on modeled
topography produced by GTL-based simulations. Analysis
of the steady state topography produced by these models
shows significant differences in the geometry of the mod-
eled landscapes, and illuminates the role played by both the
flow-routing, and slope-calculation rules. Hence, the choice
of a flow-routing and/or slope-calculation rule in a landscape
analysis and/or modeling study may impact the results, and
should be considered in the context of the analysis goals,
the resolution of the DEM, and the scale of the geomorphic
features of interest. Further studies are necessary to identify
morphologic metrics that are most sensitive to these rules
and those properties of the landscape that do not strongly
record the imprint of the chosen flow-routing rule.

Notation

A drainage area, L2.
b unit contour length, L.

Cc DEMs cross-correlation value.
D diffusion rate constant, L2 t–1.

F area fraction routed from a node.
K advection rate constant, L1–2m t–1.
l channel segment length, L.

m area exponent.
n slope exponent.
N number of downslope elements.
Nt number of nodes in a grid.
Nx number of columns in a grid.
Ny number of rows in a grid.

p slope exponent in the context of Freeman [1991].
Pe Péclet number.

q precipitation rate, L t–1.
r radius, L.

ro maximal radius, L.
S slope.

Sx slope in x direction.
Sy slope in y direction.
T transmissivity, L2 t–1.
U uplift, L t–1.
z elevation, L.
ˇ angle of surface slope.
� modulus of channel segment orientation divided

by 90ı, ı.
d� angular extent of a radial point source.
�x distance between grid nodes, L.
rzc channel slope.
� Poisson distribution parameter.
� angle of internal friction.
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