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Abstract The branched structure of channel networks has a primary impact on the spatial distribution
of elevation, water, and life across Earth’s surface from the hillslope to the continental scale and is also
observed on other planets. However, the link between this dendritic multiscale structure and the erosional
processes that sculpt it has remained elusive for more than six decades. In fact, many topologic measures fail
to distinguish natural networks from those generated by random walks. Here we show that a fundamental
multiscale topologic symmetry is ingrained into the structure of these networks and reflects the equal
elevation drop spanned by flows that split at the drainage divide and meet again downslope. We
demonstrate that this symmetry distinguishes random-walk networks from natural ones, captures the
temporal evolution of these networks, and divulges information about the processes that shape them.

1. Introduction

The pervasiveness of and order within the structure of Branched Channel Networks (BCNs) fueled some of
the earliest interest in landscape forms [Playfair, 1802; Gilbert, 1877], but Horton [1945], was the first to relate
metrics of this structure to the details of erosional mechanics in operation within drainage basins. Horton’s
theory, which linked metrics of basin topology to the action of fluvial erosion, was challenged by Leopold
and Langbein [1962], who postulated that BCNs are structured to maximize entropy in a geomorphic sys-
tem, regardless of the details of erosional mechanics. They found that a random-walk process (Figure 1a)
produces network topologies indistinguishable from those observed in nature when Horton’s metrics were
used to quantify their form. Their results were later corroborated by Shreve [1966]. Interestingly, these topo-
logic consistencies were also measured over demonstrably nonrandom networks, constrained by criteria
of slope [Howard, 1971], energy optimization [Howard, 1990; Rodŕıguez-Iturbe et al., 1992], hypothesized
landshaping processes [Leheny and Nagel, 1993], or strict topological attributes [Kirchner, 1993], thus culmi-
nating in the conclusion that the plan view topology of BCNs produces similar Horton’s metrics regardless
of how they form [Kirchner, 1993]. This conclusion was later challenged through investigations of net-
works simulated using a minimum energy expenditure hypothesis [i.e., Rodŕıguez-Iturbe et al., 1992], which
demonstrated that Horton’s metrics are avoidable, and that natural, simulated, and random-walk networks
can be distinguished through simultaneous comparison of multiple plan view metrics that primarily rely
on basin’s length and drainage area [Rigon et al., 1993; Rodŕıguez-Iturbe and Rinaldo, 1997; Rinaldo et al.,
1998, 2014].

An alternative approach to understanding landscape form uses conservation of mass with semiempir-
ical Geomorphic Transport Laws [Dietrich et al., 2003] to produce Landscape Evolution Models (LEMs)
that predict topographic evolution [Willgoose et al., 1991a; Howard, 1994; Perron et al., 2012]. LEMs pro-
duce topography that is continuous across the model domain as it evolves to a steady state form in which
mass inputs to a landscape are balanced by erosional mass export (Figure 1d). This approach prove use-
ful in exploring landscape temporal evolution and response to different processes and external conditions
[Willgoose et al., 1991a; Howard, 1994; Dietrich et al., 2003; Perron et al., 2009]. However, until recently
[Perron et al., 2012;Willett et al., 2014], no studies have been able to explicitly link plan view attributes of
BCNs directly to the erosional mechanics that operate within them. The studies that made this link did
so either at the uppermost tips of BCNs where hillslopes transition to channels [Perron et al., 2012], or to
explore the impact of BCNs configuration on processes of divide migration [Willett et al., 2014]. Hence, it is
still unclear how the details of erosional mechanics impact the multiscale geometry of an entire network
[Leopold and Langbein, 1962; Shreve, 1966; Dietrich and Montgomery, 1998; Rinaldo et al., 1998; Dodds and
Rothman, 2000].
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Figure 1. Detection of topographic discontinuities using 𝜓 . Drainage area map (normalized to maximum watershed
area; A∗) of (a) random-walk and (b) modeled (i.e., LEM-produced with specified 𝜃 = 0.5. Table S1) networks. Dashed and
dotted arrows mark example paired flow paths. (c,d) Elevations (normalized to maximum elevation; Z∗) calculated from
the area maps by upslope integration of equation (2) from the fixed elevation boundaries with 𝜃 = 0.5. Random-walk
network configurations, shown in Figure 1c, produce sharp elevation discontinuities across divides because flow paths
are not necessarily configured to abide by equation (3). (e) 𝜓1 versus 𝜓2 for all paired-flows of 𝜓 ≤ 10 within these
random and modeled landscapes. 𝜓1 and 𝜓2 are arbitrarily assigned to visualize the scatter around the 1:1 line that
denotes 𝜓1 = 𝜓2.
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This contribution addresses the link between channel forming processes and the multiscale geometry of
BCNs. We use the methodology detailed below to show that the structure of BCNs is constrained by a mul-
tiscale topologic symmetry that distinguishes random-walk networks from natural and simulated ones. We
then show that this symmetry captures the temporal evolution of BCNs topology, and links the geometry
of the entire channel network to the processes that form it (as captured by the channel profile) and to the
degree by which these processes modify preexisting topography.

2. Method

We draw on the geometry of the channel profile to define a process-related constraint on the branched plan
view structure of BCNs. When a landscape is at steady state, so that incision is everywhere balanced by rock
uplift, the along-flow profile of channels is concave up so that channel slope (S[]) and drainage area (A[L2])
are related to one another as [Howard, 1971; Howard and Kerby, 1983;Willgoose et al., 1991b]

S ∝ A−𝜃 , (1)

where 𝜃, the channel concavity, is empirically dependent on the channel forming process and likely reflects
the process mechanics [Willgoose et al., 1991b; Seidl and Dietrich, 1992;Whipple and Tucker, 1999;Whipple et
al., 2000; Tucker and Whipple, 2002;Mitchell, 2005; Stock and Dietrich, 2006]. Thus, the elevation drop (Δz [L])
between two points along a channel at steady state is dependent on 𝜃 and on the distribution of drainage
areas along the distance (Lf [L]) between these two points [e.g., Perron and Royden, 2012;Willett et al., 2014]:

Δz ∝ ∫
Lf

0
A(L)−𝜃dL, (2)

where A(L) acknowledges that drainage area changes along the channel length (L). Finally, we utilize the
fact that flow paths that initiate at an infinitesimal distance apart on each side of a continuous drainage
divide and rejoin downslope (Figures 1a–1d) must share the same elevation drop along their flow route. For
simplicity we assume that the extent and relief of hillslopes is negligible compared to that of these paired
flow paths and that the proportionality constant between S and A−𝜃 is everywhere constant. In that case,
the symmetry in elevation drop across the divide implies

∫
Lf1

0
A1(L)−𝜃dL ≃ ∫

Lf2

0
A2(L)−𝜃dL , (3)

where the right-hand side and left-hand side represent the proportionate elevation drop (𝜓 [L−2𝜃+1])
between divide and junction along two flow paths (noted as subscripts 1 and 2). Thus, the channel con-
cavity (𝜃) and the arrangement of drainage areas in the watershed determines the three-dimensional basin
topography such that it ensures a symmetry in 𝜓 across divides (i.e., equation (3)) of various scales. The
arrangement of basin areas is produced by the network topology, and so this topology must be configured
in accordance with 𝜃 such that it satisfies this symmetry everywhere across the landscape.

This simple analysis suggests that the adherence of a network to the symmetry constraints required by
equation (3) can be measured using the discordance between the proportionate elevation drops (𝜓1, 𝜓2)
along sets of flow paths initiating and rejoining at each divide and junction in a network, respectively. Our
procedure for assessing consistency of a BCN’s geometry with its three-dimensional structure identifies all
paired flow paths that initiate at adjacent points along each drainage divide in the landscape and traverse
the same junction, and calculates a discrete form of 𝜓 for each one of these flows

𝜓 =
np∑
i

A−𝜃
i Δli , (4)

where np is the number of nodes along the flow pathway, Ai is the drainage area of the ith node, and Δli
is the distance between the ith node and its down-flow neighbor. We then quantify the consistency of 𝜓1

and 𝜓2 with equation (3). Basins in which paired flow paths are configured to satisfy equation (3) can be
visually identified by plotting 𝜓1 versus 𝜓2 and comparing the distribution of all pairs to the expected 1:1
line (Figure 1e). We calculated the basin-wide consistency of 𝜓1 and 𝜓2 pairs with equation (3) by a metric

Cn = 𝜓12
−1

√√√√(
1
n𝜓

n𝜓∑
i=1

(
𝜓1i − 𝜓2i

)2)
, (5)
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Figure 2. BCNs comparison. Probability density functions (PDFs) of Cn (x axis) calculated for natural (Table S2, N = 207),
random-walk (N = 140), LEM networks (N = 140), and networks produced by minimizing energy expenditure
(N = 140). Cn for each network is calculated from 102 to 104 sets of 𝜓1, 𝜓2 values. Inset map shows locations of ana-
lyzed natural networks extracted from SRTM90 DEMs [Jarvis et al., 2008] super posited on an earthquake map (http://
earthquake.usgs.gov/earthquakes). Circle size is proportional to Cn and red and blue circles mark Cn values for BCNs
selected in seismically active and inactive areas, respectively. These two Cn populations are statistically distinct based on
a Kolmogorov-Smirnov test (𝛼 = 0.99). The empirical CDFs that underlie the PDFs plotted here (which were smoothed
for better visualization using a normal kernel density estimator) are shown in Figure S1.

that reflects the ratio between the standard deviation of the difference between 𝜓1 and 𝜓2 around the
expected zero, and the mean 𝜓 value (𝜓12) calculated for all 𝜓 pairs across the basin (n𝜓 ). A minimal value of
Cn = 0 reflects a perfect symmetry in 𝜓 across divides (i.e., 𝜓1 = 𝜓2) everywhere in the basin.

We first performed this procedure over random-walk-generated, modeled, and natural BCNs to identify
those network topologies that are inconsistent with the continuous topography and power law scaling
of watershed area and channel slope typical of steady state landscapes. We then used this procedure to
explore whether this symmetry captures the temporal evolution of BCNs topology over simulated land-
scape. Finally, we examined simulated BCNs of different concavities and show that the symmetry we
propose explains plan view differences in the configuration of these networks, and the degree to which they
modify preexisting topography.

3. Results
3.1. Comparison of Random-Walk-Generated, Modeled, and Natural BCNs

To explore whether the symmetry in 𝜓 differentiates between BCNs produced by different procedures, we
analyzed BCNs generated by random-walk-processes, LEMs, energy-minimization procedures, as well as
those extracted from natural landscapes. We first generated random walk networks, akin to those produced
by Leopold and Langbein [Leopold and Langbein, 1962] (Figure 1a). From these network topologies we then
calculated watershed area and assumed a value of 𝜃 to calculate 𝜓1 and 𝜓2 for each set of paired flows
(e.g., Figure 1e). An example random-walk simulation produces large misfits between 𝜓1 and 𝜓2 (Figures 1a,
1c, and 1e), which implies that topographic discontinuities are required by this network configuration and
equation (1) (Figure 1c). The procedure was repeated for all random-walk networks to calculate probability
densities of Cn (Figure 2)—all of these networks produced Cn values > 0.48 with 𝜃 = 0.5 (varying 𝜃 between
0 and 1 did not significantly affect the results). Networks produced using the LEM [e.g., Howard, 1994; Perron
et al., 2009] and minimum energy expenditure methods [Rodŕıguez-Iturbe et al., 1992; Sun et al., 1994a] (both
generated using specified values of 𝜃 = 0.5, supporting information) all produced Cn values < 0.15. Finally,
we performed the analysis procedure on 207 natural basins across the globe (Figure 2 in the supporting
information). For each natural basin we calculated channel slopes and areas by routing flow over a 90 m
Digital Elevation Model (DEM) and regressed over these slopes and areas to determine 𝜃. We then used 𝜃

and the calculated areas to compute 𝜓s and Cn (Figure 2, S2) as before and found mean Cn to be 0.23.
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Figure 3. Transition of LEM-simulated networks from an initially disordered to an ordered state. Insets show normal-
ized drainage area (A∗) maps for selected time steps (bold circles, connected via dotted lines). t∗ (x axis) is dimensionless
model time, calculated as t∗ = tU∕zm, where t is model time and zm is the steady state relief. Analysis is based on
synthetic landscapes produced by LEM (Table S1), where 𝜃 is prescribed as 0.2 to highlight temporal differences in net-
work configuration. The exact form of this curve depends on the initial and boundary conditions and on the concavity
associated with the simulated channel forming process.

3.2. Temporal Reconfiguration of BCNs

We used LEM simulations to study the processes by which BCNs may transition from a disordered state in
which Cn ≫ 0 to one in which the network’s form is balanced to maintain topographic continuity across
the landscape (Cn ≃ 0). We designed a simple set of numerical experiments in which randomized initial
topography was filled to prevent internal sinks, material was introduced into the model by uplift, all bound-
aries were held at fixed elevation during the simulation, and the topography was allowed to evolve through
incision and sediment transport processes [e.g., Howard, 1994; Pelletier, 2004; Perron et al., 2009](supporting
information). Initially, the randomized, pit-filled initial topography produced networks of high Cn values that
shared affinity to those produced by random walks (Figures 3 and S3). However, as the landscape evolved,
the initially large misfits between 𝜓1 and 𝜓2 were removed, and the value of Cn decreased as the network
progressively satisfied the symmetry required by equation (3)(Figures 3 and S3).

3.3. Channel Concavity and BCNs Configuration

The configuration of BCNs is dependent on the channel concavity [Howard, 1994; Sun et al., 1994b; Tucker
and Whipple, 2002]. To investigate the causes for this dependence and its link to the symmetry in 𝜓 , we sys-
tematically changed 𝜃 in LEM simulations that share the same initial conditions and analyzed the resulting
steady state BCNs configuration in comparison to their initial configuration. We calculated the correspon-
dence between network geometries at the beginning and end of our LEM simulations using the cross
correlation (Cc) between the drainage area maps of the initial and final time steps of each simulation
(Figure 4):

Cc =
∑ng

i=1 (
1Ai − ̄1Ai) × (2Ai − ̄2Ai)√∑ng

i=1 (1Ai − ̄1Ai)2 ×
√∑ng

i=1 (2Ai − ̄2Ai)2
, (6)

where 1Ai,
2Ai are the drainage areas of the ith’s node of the two DEMs compared, ̄1Ai , ̄2Ai are the mean

drainage areas of these two landscapes, and ng is the total number of nodes in each grid. Cc values of 1,
−1, and 0 reflect perfect correlation, anticorrelation, and no correlation, respectively. Cc increased system-
atically from 0.08 to 0.89 when concavities changed between 0.1 and 0.8 (Figure 4a). This indicates that
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Figure 4. Impact of concavity on preservation of initial network structure. Simulation parameters presented in Table S1.
(a) Cross-correlation (Cc , y axis) between drainage area maps of initial and steady state BCNs simulated with different
concavities (𝜃, x axis). Insets show maps of normalized drainage area (A∗) for the initial (t = 0) configuration shared by all
models, and for simulated landscapes with differing concavities after they evolved to a steady state form (connected via
dotted lines to bold circles showing the Cc values of the associated concavity). (b) Relations between lengthwise symme-
try (y-axis) and channel concavity (x axis). Lengthwise symmetry is quantified by the RMS of the difference between the
flow pathway lengths of paired flows (L1, L2).

high-concavity landscapes systematically preserve the signature of preexisting topography as they evolve,
while low-concavity landscapes tend to erase this signature.

The inset maps of Figure 4 demonstrate that low-𝜃 networks show systematically higher degrees of plan
view symmetry about drainage divides than their high-concavity counterparts that are tortuous and asym-
metric. To investigate this similarity, we quantified the degree of lengthwise symmetry around drainage
divides for these landscapes by calculating the difference in flow pathway lengths for each set of paired
flows, and computing the root-mean-square of these differences (RMSD) for all paired flows in the simu-
lated landscapes. These RMSD values increase from 0.24 to 0.74 as the concavity increases (Figure 4b) thus
demonstrating that low-concavity networks are associated with higher degree of lengthwise symmetry
around drainage divides.

We next used the symmetry in 𝜓 to explore whether the network topology is diagnostic of the channel con-
cavity. We used LEM-produced steady state landscapes simulated with concavities ranging from 0.2 to 0.7,
and calculated Cn for each of these landscape using a range of concavity values (𝜃 = 0 to 0.8). When the con-
cavity with which the landscape was simulated is ≤ 0.5, a minimal Cn value is attained when Cn is calculated
using the same concavity with which the landscape was simulated (Figure S4). However, as the concavity
of the simulated landscape increases, similarly low Cn values are also produced when the concavity used to
calculate Cn is larger than the concavity with which the landscape is simulated.

4. Discussion
4.1. Symmetry in BCNs Produced by Random-Walk, Energy-Minimization, LEMs,

and Natural Processes

The Cn values capture topologic differences between BCNs produced by different processes (Figure 2). The
relatively high Cn values associated with random-walk-generated BCNs reflect the large misfits between 𝜓1

and 𝜓2 over such networks. These misfits demonstrate that Cn captures the simple fact that such networks
are constructed regardless of a vertical dimension, so that their topology lacks the symmetry required to
ensure equal elevation drop of paired flows whose 𝜃 values are similar to those observed in nature. In con-
trast to these high Cn values, networks produced via LEMs or energy-minimization procedures, produce
distinctively lower Cn values (Figure 2) that reflect the topographic continuity of these landscapes. The small
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difference in Cn between these landscapes may vary with the method used to attain and define the steady
state configurations (Figure S6), and corroborates the proposed similarity of steady state solutions attained
by the LEM and energy minimization approaches [Sun et al., 1994b; Sinclair and Ball, 1996; Banavar et al.,
2001]. The Cn values of natural networks are lower than those of random ones but higher than those of sim-
ulated landscapes. These higher Cn values likely reflect deviations from equations (1) and (3) due to spatial
variations in lithology, uplift and climate (Figure S7), as well as deviations from steady state conditions and
the imprint of multiple geomorphic processes that are not accounted for in the simulated landscapes (Text
S1 and Figures S4 and S5). This is demonstrated by the correlation between high Cn values and tectoni-
cally active areas (Figure 2), where such spatial heterogeneities and deviations from steady state are more
likely to occur. Despite these natural heterogeneities, the probability density of Cn for natural networks over-
laps with that of networks produced by LEMs and energy-minimization procedures, but is nonoverlapping
with networks produced by a random-walk process (Figure 2). These findings firmly reject the hypothesis
of Leopold and Langbein [1962] and demonstrate that the geometry of natural BCNs is poorly explained by
random-walk processes but instead appears to more plausibly reflect the erosional processes within these
watersheds as captured by equation (1).

4.2. Temporal Convergence to Symmetry

As demonstrated by Figures 3 and S3, initially large misfits between 𝜓1 and 𝜓2 were removed as the land-
scape evolved toward a steady state and the network topology progressively satisfied the symmetry
required by equation (3). The transition between these states occurs through processes of divide migration
[e.g., Bishop, 1986;Mudd and Furbish, 2005], where differences in slope across asymmetric divides cause dif-
ferential erosion rates that lead to divide migration that continues until the slopes at each side of the divide
are approximately equal. This process occurs over divides of basins of multiple scales where small basins
equilibrate prior to larger ones (Figure S3), and so BCNs go through multiscale topologic reconfiguration
that continues until all divides and 𝜓 ’s approach symmetry.

4.3. Concavity, Process, and Network Configuration

The channel concavity (𝜃) probably reflects the mechanics of different erosional processes [e.g.,Willgoose et
al., 1991b; Seidl and Dietrich, 1992;Whipple and Tucker, 1999;Whipple et al., 2000; Tucker and Whipple, 2002;
Mitchell, 2005; Stock and Dietrich, 2006]. For example, BCNs eroded by debris flows have demonstrably lower
concavities than those dominated by fluvial processes [e.g., Dietrich et al., 2003; Stock and Dietrich, 2003,
2006]. While the covariance between channel concavity and network configuration is typically attributed
to boundary and initial conditions effects [e.g., Howard, 1994; Tucker and Whipple, 2002], an explicit link
between these parameters remained elusive.

The symmetry in 𝜓 provides such link and ties the channel concavity to the network configuration. The
preservation of initial network configuration by high-concavity networks arises from the rapid increase
in channel relief near the divides of such networks. This abrupt increase in relief allows large mismatches
between 𝜓1 and 𝜓2 to be resolved with relatively little divide migration. Thus, as demonstrated in Figure 4,
processes associated with high concavity may more readily preserve the initial form of networks than their
low-concavity counterparts. A complementary explanation ties the geometric similarity between adjacent
low-concavity BCNs (Figure 4) to the fact that as the value of 𝜃 decreases the symmetry in 𝜓 develops into a
lengthwise symmetry (i.e., equation (3) with 𝜃 → 0, Figure 4b) across divides (regardless if the paired flows
meet at a junction or share an outlet at a boundary of common elevation). Such symmetry requires sub-
stantial changes in the initial configuration of BCNs and results in steady state topography of high visual
similarity between adjacent basins. In contrast, very high 𝜃 values satisfy equation (3) regardless of the net-
work configuration (i.e., equation (3) with 𝜃 → ∞) so that even a random-walk-like initial BCN configuration
is preserved in the steady state topography (Figure 4a). Hence, transition from low- to high-concavity pro-
cesses (e.g., from debris flows to detachment limited fluvial channels) will preserve the initial, low-concavity
network configuration while an opposite transition may cause significant network reconfiguration. Thus,
preexisting BCNs might serve as a template from which specific stable network configurations are ultimately
selected, and the degree to which this template is modified may depend on the details of the erosional
processes as captured by 𝜃.

The topology of low-concavity networks is more diagnostic of their concavity than that of high-concavity
networks, so that the concavity of simulated low-concavity channels (𝜃 ≤ 0.5) can be computed from
the network topology as captured by the spatial distribution of drainage areas (Figure S4). This difference
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between low- and high-concavity networks likely reflects the relations between 𝜃 and the preservation of
initial conditions (Figure 4), such that for 𝜃 > 0.5 the initial conditions are well preserved and changes in
𝜃 has little influence on the degree of preservation (i.e., Figure 4, for 𝜃 > 0.5). Thus, the configuration of
simulated high-concavity networks primarily depends on the initial conditions and is less diagnostic of the
value of 𝜃. This suggests that the concavity of 𝜃 < 0.5 networks can be reconstructed from plan view images
when vertical data is not available (e.g., seismic images, Cassini Titan Radar Mapper images), and that the
configuration of 𝜃 > 0.5 networks divulges information regarding the initial topography from which the
landscape was formed.

4.4. Method Limitations

While Cn and 𝜓 provide convenient metrics to compare and analyze BCNs formed by different processes, the
limitations of this methodology should be considered when applying it to landscape analysis. First, while
Cn = 0 implies perfect symmetry, there is no finite Cn value that describes perfect asymmetry such that
the interpretation of high Cn values is mostly comparative. The high Cn values calculated from random-walk
networks (Cn > 0.48, mean Cn = 0.52, Figure 2) provide a convenient reference for such comparisons.
Second, high Cn values may also arise from nonlinear relations between 𝜓1 and 𝜓2, or due to small number
of 𝜓 pairs that significantly deviate from a 1:1 line. Hence, detailed 𝜓-based interpretation requires analy-
sis of 𝜓1 vs. 𝜓2 plots. Such detailed interpretation will also benefit from identifying the spatial location of 𝜓
pairs that deviate from the general trend in these plots. Third, 𝜓-based landscape analysis relies on a homo-
geneous distribution of uplift, climate, lithology, and 𝜃, so that high Cn values may reflect deviations from
these assumption rather than, for example, deviations from steady state. In particular, this analysis does not
account for the different 𝜃 values typically associated with hillslope and slope failure processes that may
dominate small drainage area portions of the landscape. The effect of different 𝜃 at small drainage areas
can be accounted for by calculating 𝜓 from a paired flows junction up to a given area threshold [e.g.,Willett
et al., 2014], or by using low-resolution DEMs where the extent of such processes is smaller than the DEM
resolution. In cases where sufficient knowledge exists regarding the spatial distribution of 𝜃, uplift, climate,
and lithology, these spatial heterogeneities can be explicitly accounted for in the discrete calculation of 𝜓
(i.e., equation (4)).

5. Summary

The multiscale plan view structure of BCNs reflects two coupled constraints: (a) the characteristic along-flow
channel profile shaped by the channel forming processes (as reflected by the channel concavity; 𝜃), and (b)
the equal elevation drop spanned by two flows that initiate at an infinitesimal distance apart on each side
of a drainage divide and meet again downslope. The coupling of these two constraints results in multiscale
topological symmetry around drainage divides. We found that the degree to which these constraints are
satisfied distinguishes random, natural, and modeled landscapes and captures differences in network con-
figuration between tectonically active and inactive areas. We demonstrate that this topologic symmetry
increases as the landscape approaches steady state and explains temporal variations in BCNs configura-
tion. This symmetry also explains why simulated landscapes of various concavities differ in the degree of
preservation of initial conditions, and in the topological similarity of adjacent basins. Thus, our findings
demonstrate that preexisting BCNs might serve as a template from which specific stable network configura-
tions are ultimately selected, and the degree to which this template is modified may depend on the details
of the erosional processes as captured by the channel concavity (𝜃). Further work may use the approach pro-
posed here to investigate spatiotemporal variations in these processes through their plan view topographic
imprint and to reveal the mechanics of erosional processes on this and other planets.
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