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Abstract Topographic features such as branched valley networks and undissected convex-up hillslopes
are observed in disparate physical environments. In some cases, these features are formed by sediment
transport processes that occur discretely in space and time, while in others, by transport processes that are
uniformly distributed across the landscape. This paper presents an analytical framework that reconciles the
basic attributes of such sediment transport processes with the topographic features that they form and
casts those in terms that are likely common to different physical environments. In this framework, temporal
changes in surface elevation reflect the frequency with which the landscape is traversed by geophysical
flows generated discretely in time and space. This frequency depends on the distance to which flows travel
downslope, which depends on the dynamics of individual flows, the lithologic and topographic properties
of the underlying substrate, and the coevolution of topography, erosion, and the routing of flows over the
topographic surface. To explore this framework, we postulate simple formulations for sediment transport
and flow runout distance and demonstrate that the conditions for hillslope and channel network formation
can be cast in terms of fundamental parameters such as distance from drainage divide and a friction-like
coefficient that describes a flow’s resistance to motion. The framework we propose is intentionally general,
but the postulated formulas can be substituted with those that aim to describe a specific process and to
capture variations in the size distribution of such flow events.

1. Introduction

The morphology of branched valley networks and undissected convex-up hillslopes formed in subaerial
environments has been a central thread of investigation of Earth surface studies, which usually associate
these features with the flow of water over the Earth’s surface and with local processes such as bioturbation,
respectively [e.g., Gilbert, 1877; Davis, 1892; Gilbert, 1909; Horton, 1945; Culling, 1960; Shreve, 1966; Smith and
Bretherton, 1972; Dunne, 1980; Rodríguez-Iturbe et al., 1992; Howard, 1994; Dietrich and Perron, 2006]. However,
both branched channel networks and undissected, convex-up hillslopes are also observed in disparate phys-
ical environments where occasional mass transport events entrain substrate from landscapes [McGregor
et al., 1982; Pratson and Coakley, 1996; Mitchell et al., 2002; Mitchell, 2005, 2006; Howard, 1998; Treiman, 2003;
Shinbrot et al., 2004; Dietrich and Perron, 2006; Shinbrot, 2007; McGuire and Pelletier, 2013] (Figure 1). For
example, occasional density flows dominate entrainment and sediment transport in submarine environments
[e.g., McGregor et al., 1982; Pratson and Coakley, 1996; Mitchell et al., 2002; Mitchell, 2005, 2006], episodic snow
avalanches shape the landscape in arctic areas [e.g., Luckman, 1977, 1978, 1992; Shroder et al., 1999; Curry,
1999], debris flows, landslides, and rock avalanches play a major role in sediment transport over steep moun-
tainous terrain [Reneau and Dietrich, 1987; Montgomery and Buffington, 1997; Howard, 1998; Stock and Dietrich,
2003, 2006; Booth and Roering, 2011], and localized avalanches probably generate small-scale networks on
steep slopes made of snow or loose gravel (Figure 2). In Martian landscapes, several authors have argued that
rock avalanches and infrequent granular flows of windblown sand carve gullies commonly observed on steep
Martian slopes [Howard, 1998; Treiman, 2003; Shinbrot et al., 2004; Shinbrot, 2007]. Nonfluvial branched chan-
nel networks are also formed by granular flow in laboratory experiments at scales <1 m [Shinbrot et al., 2004;
Shinbrot, 2007].

The fact that different processes give rise to similar forms suggests that common underlying constraints
govern the formation of these features across different physical environments, whether they are formed
by spatially and temporally discrete or uniform processes. The seminal work of Smith and Bretherton [1972]
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Figure 1. Channel networks in different physical environments: (a) Hillshade image of terrestrial landscape (Tennessee
Valley area, California), (b) Hillshade image of a submarine environment off shore of California (Ascension Canyon
system, courtesy of Miles Traer). (c) HiRise image of Martian landscape (http://www.uahirise.org/PSP_003939_1420) at
approximately 192.9∘E, 37.7∘S. Black circles over inset maps show terrestrial image locations, and black arrows point
northward.
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demonstrates that the development of channel networks and undissected hillslopes is dependent on a land-
scape’s resilience to topographic perturbations, which in turn depends on the process that transport sediment
in and out of these perturbations. Yet their work casts channel-forming processes in terms of water discharge
and uniform rainfall, such that it does not attempt to describe the development of these topographic fea-
tures in environments dominated by occasional mass transport events. Several studies, however, suggested
[Mitchell, 2004, 2005; Stock and Dietrich, 2006; Somme et al., 2009] and even demonstrated numerically [Chase,
1992; Pratson and Coakley, 1996; Crave and Davy, 2001; Haff , 2001] that valley networks may form in envi-
ronments where flows that are generated discretely in space and/or time (such as debris flows or turbidity
currents) converge downslope. Pratson and Coakley [1996], for example, used discretely generated subma-
rine flows (“floxels”), induced when prescribed slope failure conditions are attained, to demonstrate that
discretely generated submarine flows produce natural-looking bathymetry. In the subaerial environment,
Chase [1992] demonstrated that the cumulative impact of stochastically generated local precipitation events
(“precipitons”) can form landscapes that have various degrees of dissection depending on the relations
between diffusive, erosive and depositional processes. Crave and Davy [2001] extended this approach, and
combined a stochastic “preciptons” model with a generalized expression for fluvial sediment transport, where
the relative magnitude of erosion and deposition is determined through a single length-scale factor (ld) [after
Kooi and Beaumont, 1994, 1996]. A somewhat similar approach was used by Haff [2001], who demonstrated
that locally generated “waterbots” and “diffusivebots” are capable of producing channels and hillslopes,
respectively, and suggested that this approach can be applied to nonfluvial flow types. While these examples
span both submarine and subaerial environments, to our knowledge there is currently no framework that
casts the conditions for hillslope and channel formation in terms of basic constraints that are common to both
discrete and uniformly distributed sediment transport processes.

In this contribution, we present a framework that generalizes the conditions for the formation of different
landforms through an explicit dependence between sediment transport rate and the frequency at which dis-
cretely generated geophysical flows traverse the landscape. In this framework, the runout distance of flows
that are generated discretely in space and/or time (hereafter termed discrete flows) determines the frequency
at which upslope-generated flows traverse downslope locations and thus the sediment flux to and from these
locations. We postulate simple formulations to demonstrate the effect of runout distance and sediment trans-
port variables on the resulting landscape; however, the framework’s structure facilitates substitution of these
simple formulations with expressions that are more representative of specific processes. We find that when
runout distance is long, a function of low resistance to flow, the temporal averaging of multiple flows may
form channelized morphologies equivalent to those produced by overland flow. When runout distance is
short (high flow resistance), local sediment transport produces convex-up slope geometries that are identi-
cal in functional form to the diffusive idealization of hillslope transport. Additionally, flows that arrest within
a landscape may form topographic fluctuations akin to those observed in nature. We thus cast the conditions
for landform development in terms of flow resistance and distance from drainage divide, which are likely com-
mon to different flow types that shape the various environments where channel networks and undissected
hillslopes are observed.

2. Model
2.1. Background
A basis for understanding the conditions that lead to the formation of hillslopes and channel networks
is provided by Geomorphic Transport Laws (GTLs) that relate local (e.g., landscape slope) and nonlocal
(e.g., upslope catchment area) topographic attributes to mass fluxes and incision rates across landscapes.
These rules can be employed with conservation of mass to reveal relationships between land-shaping
processes and landscape patterns such as branched valley networks [e.g., Horton, 1945; Howard, 1971;
Rodríguez-Iturbe et al., 1992; Perron et al., 2012; Willett et al., 2014; Shelef and Hilley, 2014], the concavity of
channel profiles [e.g., Gilbert, 1877; Leopold and Maddock, 1953; Smith and Bretherton, 1972; Whipple and
Tucker, 1999], and the convexity of hillslopes [e.g., Davis, 1892; Gilbert, 1909; Culling, 1960; Dunne and Aubry,
1986; Roering et al., 2001] on this and other planets [Aharonson et al., 2002; Dietrich and Perron, 2006; Black
et al., 2012]. While the form of a particular GTL depends on the geomorphic transport process considered, all
GTLs cast mass transport rate in terms of some measure of the topography and an empirically determined
rate constant.
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Figure 2. Branched valley networks on steep slopes of (a) dry snow in Alaska (used with permission from Teton Gravity
Research [http://www.tetongravity.com/photos]) and (b) loose gravel in the Jammu and Kashmir state at Northern India
(courtesy of Dolev Shelef ).

Smith and Bretherton [1972] first associated growing topographic instabilities with the initiation and expan-
sion of branched channel and valley networks. They found that these instabilities grow for certain func-
tional forms of GTLs, while other forms damp these instabilities. Prior to this work, it was well known that
diffusive-like geomorphic transport processes, whose rates depend solely on the surface slope, evolved
toward stable, generally convex or planar landforms. For example, sediment transport rate by processes such
as bioturbation or freeze-thaw is often regarded as proportional to the local topographic slope (i.e., diffusive
process) [Davis, 1892; Gilbert, 1909; Culling, 1960] as

qdif = −DS , (1)

where qdif [L2 ’t−1] is the sediment transport rate per width (w [L]) due to these diffusive processes, S [] is the
local topographic slope, and D [L2 t−1] is a rate constant that scales slope to mass transport rate.

To conserve mass, the spatial divergence of the sediment transport rate per width (qw , [L2 t−1]) must be
accompanied by a change in surface elevation over time:

dz
dt

= u
𝜌r

𝜌s
− ∇ ⋅ qw , (2)

where z [L] is elevation, t [t] is time, u [L t−1] is rock uplift rate [e.g., England and Molnar, 1990], and 𝜌r and 𝜌s

are the rock and sediment densities [M L−3], respectively. When qw = qdif, equations (1) and (2) together form
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a diffusion equation with a source term (u in this case) that evolves toward a stable geometry when boundary
elevations are held constant over time, as the mass transported by hillslope processes removes that provided
by uplift or relative base level lowering [e.g., Culling, 1960]. In this particular case, landscapes in which a steady
state has been achieved (i.e., dz∕dt = 0) require sediment supply to increase downslope as the source area
for sediment increases:

qs =
𝜌r

𝜌s
uA∕w , (3)

where qs [L2 t−1] is the sediment supply rate per unit width that must be transported to maintain steady state.
When a diffusive landscape has reached a steady state, we can equate equations (1) and (3), which reveals
that slope angles must increase downslope in these landscapes to maintain sediment transport rate equal to
sediment supply, resulting in a convex-up form [e.g., Davis, 1892; Gilbert, 1909]. Under such conditions, the
steady state convex-up form is robust to perturbations applied to the surface, as these local zones of low and
high slopes on the downslope and upslope sides of the perturbations, respectively, conspire to damp such
aberrations over time in a negative feedback [Smith and Bretherton, 1972].

In contrast to diffusive transport-limited processes that are dependent only on slope, sediment transport by
running water may increase with either slope or water discharge [e.g., Gilbert, 1877; Leopold and Maddock,
1953; Smith and Bretherton, 1972; Howard and Kerby, 1983]. In this case, discharge collected upslope may
directly affect downslope sediment transport by supplying momentum that may increase transport rates as
particles are physically advected across the landscape as suspended load or bed load. Because discharge typ-
ically increases with basin area [e.g., Leopold and Maddock, 1953], this process is commonly parameterized as
[Flint, 1973, 1974; Howard, 1980; Willgoose et al., 1991a; Howard, 1994; Whipple and Tucker, 2002]

qn = −kAm′
Sn′ , (4)

where qn [L2 t−1] is the sediment transport rate per unit channel width due to such nonlocal diffusion pro-
cesses (i.e., a process where the transport rate is dependent on slope, as well as on a nonlocal term). A [L2]
(the nonlocal term) is the upslope drainage area at each point in the landscape, S is the slope, k [L2−2m′

t−1]
is an empirically calibrated rate constant, and m′ and n′ are dimensionless exponents that scale transport
to A and S, respectively. Downslope changes in channel width are assumed to have a power law form that
is encapsulated in m′ and k. Empirical studies suggest that a narrow range of m′ and n′ values explains the
concave-up channel profiles that are ubiquitous in subaerial channel networks [e.g., Carson and Kirkby, 1972;
Prosser and Rustomji, 2000]. When sediment supply is balanced by transport, equation (3) requires that sed-
iment supply increases downslope; however, depending on the values of m′ and n′, the effect of increasing
discharge may produce sediment transport rates in excess of supply for a fixed slope. As the value of m′

increases relative to n′, convex-up topographic geometries typical of local hillslope processes transition to
concave-up convergent geometries [Kirkby, 1971, Figure 3]. Interestingly, in cases where such concave pro-
files form, the the steady state topographic surface is no longer robust to topographic perturbations [Smith
and Bretherton, 1972]. Instead, the lateral deflection of flow causes localized areas of flow convergence in
which transport is accelerated. This causes a positive feedback between transport, surface lowering, and flow
convergence [Smith and Bretherton, 1972] that may eventually establish a branched network through com-
petition, assimilation, and coevolution of multiple perturbations [e.g., Willgoose et al., 1991b; Howard, 1994].
Hence, both profile concavities and plan view branched channel networks appear to be different expressions
of processes in which sediment transport rates increase more rapidly downslope than do sediment supply
rates for a particular surface slope. The fine-scale extent of these networks is constrained by the magnitude
of hillslope-forming processes that damp the growth of these channels [Loewenherz, 1991; Montgomery and
Foufoula-Georgiou, 1993; Perron et al., 2008].

2.2. Analytical Framework for the Formation of Channel Networks and Undissected Hillslopes

by Discretely Generated Geophysical Flows
While several mechanisms that rationalize the formation of branched valley networks have been pro-
posed, most invoke flow generated by uniformly distributed rainfall that creates overland flow [e.g., Horton,
1945; Willgoose et al., 1991a; Rodríguez-Iturbe et al., 1992; Howard, 1994]. As such, the forms of these
types of networks have often been associated with specific environments where such conditions prevail.
Here we relax the requirement for uniformly distributed, instantaneous rainfall (following Chase [1992],
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Figure 3. Topographic profiles of various m′ and n′ values (equation (4), after Kirkby [1971]). The y axis is elevation
normalized to the maximum elevation (z∗ = z∕max(z)), and the x axis is drainage area normalized to the maximum
drainage area (A∗ = A∕max(A)). Note that the minimum A∗ value is 0.01.

Pratson and Coakley [1996], Crave and Davy [2001], and Haff [2001]) and propose a general mechanism for
the formation of valley networks that accounts for discrete processes in which momentum imparted from
upslope locations may affect downslope sediment transport.

We begin by noting that the GTLs described above quantify sediment transport rate by scaling some measure
of the topography (i.e., slope, area) by an empirically determined rate constant (e.g., D, k in equations (1), (4)).
This approach segregates the topographic attributes (A, S) that scale sediment transport rate and the time
scale introduced by the rate constant. Thus, the only mechanism by which transport rates can increase downs-
lope is by a corresponding increase in one of these topographic attributes (e.g., A, S). As a result of the
formulation of GTLs, only those processes whose transport rates depend strongly on catchment area can pos-
sibly give rise to the positive feedback that is required to induce the growth of perturbations that results in
the formation of concave channel networks [i.e., Smith and Bretherton, 1972].

The formulation we propose posits that downslope increases in sediment transport rate need not be achieved
by increasing discharge but might equally well result from the fact that discrete flows are routed more fre-
quently through convergent, low-lying portions of the landscape. In such a framework, the sediment transport
capacity of individual discrete flows may not increase downslope at a magnitude that exceeds sediment
supply, yet concave channel networks may still form due to the increased frequency at which flows tra-
verse these convergent, low-lying areas. As such, perturbation growth and channel network development
[i.e., Smith and Bretherton, 1972] occur when the collection of discrete flows generated throughout the
landscape augment the subtle downslope increase in sediment transport capacity of each individual flow
such that the collective increase in sediment transport capacity exceeds sediment supply. Undissected hill-
slopes will form when the downslope collection of flows does not suffice for sediment transport capacity to
exceed supply.

We formalize this effect by considering the time-averaged sediment transport rate per width at a point (x, y)
as the sum of the sediment transported by all discrete flows that traverse this point within the time span
over which this sediment transport rate is averaged. We idealize the sediment transport rate per width for an
individual discrete flow, qp [L2 t−1], as constant over the duration of the flow (Td), such that the total volume
of sediment per width transported by a given event is determined simply by integrating over its duration.
The sediment transport rate at a point due to multiple flows depends on the number of flows that traverse
this point within a particular interval of time. This number, in turn, varies with the number of flows that are
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Figure 4. Illustration of a discrete flow generated at (x0, y0). Grey contour lines depict the underlying topography
(sloping to the lower part of the image). L0 is a value assigned at (x, y) = (x0, y0) to account for local transport processes
(see section 2.3.1). L is the distance along the flow route between (x0, y0) and (x1, y1) (see section 2.3.1). The flow
transports sediment, erodes and deposits along its route depending on L(x, y) and S(x, y) (see section 2.3.1), and will
arrest where S̄ = z(x0 ,y0)−z(x,y)

L
equals the flow resistance coefficient (R, see section 2.3.3). If S̄ = R occurs at (x1, y1), the

flow will arrest such that the binary function f (x0, y0, x, y, 𝜉) equals zero everywhere downslope of this point (i.e.,
equation (5)) and one upslope of it.

generated per area per time (hereafter referred to as the generation frequency, F [L−2 t−1]). Likewise, the
routing of these flows to the point (x, y) through the upslope topography determines how frequently these
discretely generated flows will traverse the point (x, y) and thus the sediment transport rate at this point. For
simplicity, we assume that all flows have the same duration (Td), so that the sediment transport rate per width
due to all discrete flows (qa [L2 t−1]) is

qa(x, y, t) = ∫
∞

−∞ ∫
∞

−∞ ∫
Td

0
F(x0, y0, S,A)qp(x0, y0, x, y, 𝜉)f (x, y, x0, y0, 𝜉)dtdx0dy0 , (5)

where x0 and y0 are the locations at which flows are generated (Figure 4), f (x0, y0, x, y, 𝜉) is a dimensionless
binary function that describes routing of flows across the surface and assumes a value of one if a flow gen-
erated at (x0, y0) traverses the point (x, y) and a value of zero if it does not. 𝜉(x, y, t) is a state variable that
describes the characteristics of a flow (e.g., mass, density, viscosity, and grain size distribution) at the point
(x, y) and time t, which acknowledges that these characteristics may change with space (x, y) and time (t) due
to the detailed dynamics of the flow and its interaction with the underlying substrate. As such, 𝜉(x, y, t) can
describe flows of different magnitude and rheology. 𝜉 might also empirically incorporate the impact of interac-
tions between temporally overlapping flows that traverse the same point in a landscape (e.g., rainfall-induced
parcels of water that coalesce downslope and increase discharge), although we do not formalize or explore its
effect in this study. For the sake of generality, we allow the flow generation frequency (F(x0, y0, S,A)) to vary
over the surface, as well as with topographic characteristics at (x0, y0) (encapsulated in S and A). Note that this
formulation allows for a flow, such as fluvial flow, to traverse a landscape location (f (x, y, x0, y0, 𝜉) = 1) while
carrying no sediments (qp(x0, y0, x, y, 𝜉) = 0).

In this framework, the frequency at which discrete flows traverse different landscape localities depends explic-
itly on the frequency at which they are generated (F(x0, y0, S,A)) and the way in which they are routed through
the upslope topography (f (x0, y0, x, y, 𝜉)). The dependence of f on 𝜉 accounts for the effect of flow-substrate
interactions on the distance (L) to which flows may run downslope:

L = 𝜁 (x0, y0, x, y, 𝜉) , (6)

where 𝜁 is a function parameterized in a way that captures the dependence of flow runout distance on flow
properties as well as on upslope and local topography.
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The combination of F(x0, y0, S,A) and f (x0, y0, x, y, 𝜉) explicitly links the topography of the landscape to the
time scale of sediment transport, which disentangles the time and space scales that are subsumed into the
spatially unvarying rate constant typically used in GTLs. Such an approach provides a rational means of model-
ing natural flows whose frequency of traversing points within a landscape may depend on the flow dynamics
as well as on local topographic, lithologic, and climatic attributes.

2.3. Specific Model Formulation
2.3.1. Postulated GTL
It is possible to substitute qp (equation (5)) with a particular GTL that describes a process of interest in the
general framework described by equation (5). For illustration, we construct a simple GTL that allows discrete
flows to erode and deposit throughout their route. In this GTL qp is a function of the magnitude of the local
topographic slope, S(x, y) [], and the runout distance of the flow, L(x, y, x0, y0) [L] from the point where it is
generated (x0, y0) to the point of interest (x, y) (Figure 4):

sqp(x, y) = −kdf (𝜉, x, y)[S(x, y)]n(𝜉)[L(x0, y0, x, y)]m(𝜉) (7)

sqp [L2 t−1] is the sediment transport rate per width for this particular formulation, m(𝜉) and n(𝜉) are
dimensionless exponents that depend on the process of sediment transport (captured in the local flow charac-
teristics 𝜉(x, y, t)) and allow nonlinearity in the relations between sediment transport and S and L [e.g., Gilbert,
1877; Kirkby, 1971; Willgoose et al., 1991a]. The inclusion of S and L conceptually captures the impact of grav-
ity and of momentum imparted from upslope areas of the flow, respectively, on sqp and allows for erosion
and deposition along the flow’s route. The empirical factor kdf [L2−mt−1] scales sediment transport rate to the
local topographic characteristics by subsuming the effect of flow dynamics on sediment transport into a func-
tion that varies with flow location and state. Substituting equations (7) into equation (5) gives the sediment
transport rate per width due to all flows for this particular formulation (sqa [L2t−1]):

sqa(x, y) = −∫
∞

−∞ ∫
∞

−∞ ∫
Td

0
F(x0, y0, S,A)kdf (𝜉, x, y)[L(x0, y0, x, y)]m[S(x, y)]nf (x, y, x0, y0, 𝜉)dt dx0 dy0 (8)

Finally, we substitute qw with sqa in equation (2) to describe changes in surface elevation in response to
sediment transport by discrete flows.

In some cases sediment transport may occur locally without a flow running out over the landscape, such as
with tree throw or other bioturbative processes [e.g., Roering et al., 1999, 2001]. To account for these cases we
introduce L0(x0, y0), so that when (x, y) = (x0, y0), the runout length of a flow is set to L0 and f (x0, y0, x, y, 𝜉) is
set to one, such that the value of L0 determines the magnitude of these local processes.
2.3.2. Detachment-Limited Conditions
While the proposed framework is cast in terms of sediment transport rate and focuses on transport-limited
conditions [e.g., Howard, 1994; Whipple and Tucker, 2002] that describe both local and nonlocal diffusive pro-
cesses, a slight modification facilitates a description of detachment-limited conditions [e.g., Howard, 1994;
Whipple and Tucker, 1999]. These conditions, where surface lowering is limited by the flow’s ability to detach
material from the substrate rather than by transport capacity, are described by modifying equation (5) so that
its left-hand side (LHS) equals erosion rate (Ė) [L t−1], and qp is substituted by the erosion rate produced by a
flow (qpe [L t−1]).

Ė(x, y, t) = ∫
∞

−∞ ∫
∞

−∞ ∫
Td

0
F(x0, y0, S,A)qpe(x0, y0, x, y, 𝜉)f (x, y, x0, y0, 𝜉)dtdx0dy0 (9)

Substitution of Ė with ∇ ⋅ qw in equation (2) describes changes in surface elevation in response to
detachment-limited erosion caused by discrete flows:

dz
dt

= u
𝜌r

𝜌s
− Ė(x, y, t) (10)
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2.3.3. Postulated Energy-Based Control on Runout Distance
To examine the topographic impact of flows whose runout (L) is constrained by both topography and flow
properties (i.e., equation (6)), we use a simple energy balance in which the runout distance of a flow (and thus
the value of f (x0, y0, x, y, 𝜉)) is determined by a balance between its initial potential energy and the work done
by a resisting force throughout its route [e.g., Heim, 1932; Hsu, 1975; Straub, 1996; Iverson, 1997]. For small
slope angles:

MgΔH = MgRΔL , (11)

where M [M] is flow mass, g [L t−2] is gravitational acceleration, ΔH [L] is elevation difference along flow route,
R [] is a resistance coefficient, and ΔL [L] is horizontal runout distance along the route of the flow. Note that
R = ΔH∕ΔL when mass is neither gained or lost along a given flow path, which represents a critical mean
slope, S, that is required to maintain flow motion (Figure 4).

We acknowledge the apparent discrepancy between the changing mass of an entraining and/or depositing
flow (e.g., equation (7)) and the assumption of constant mass embedded in equation (11). However, as pointed
out by Iverson [1997], changes in flow mass are tied to complex momentum exchanges between the flow, the
bed, and the banks, such that a universal energy budget that captures the impact of these external forcings
on the flow’s mass exchange is difficult to simulate. We thus choose this simple energy balance (following
Heim [1932], Hsu [1975], Straub [1996], and Iverson [1997]) and demonstrate that even this exceedingly simple
description can produce discrete flows that give rise to the formation of landforms such as branched valley
networks and undissected hillslopes. We reiterate that the purpose of equation (11) is to demonstrate the
impact of a constrained flow’s runout distance on the topography, regardless of a specific process and that
equation (6) facilitates substitution of this simple constraint with those that are formulated specifically for
processes of interest [e.g., Scheidegger, 1973].

2.4. Nondimensionalization
To better understand how the terms in equations (2), (5), and (8) control the scaling and behavior of the pro-
posed framework, we first nondimensionalize the rate of change of surface elevation at each point along the
landscape (equation (2)). To do so, we define characteristic length (lc) and time (tc) scales, and use them to
define the dimensionless groups: t∗ = t∕tc, z∗ = z∕lc, x∗ = x∕lc, y∗ = y∕lc, 𝜌∗ = 𝜌r∕𝜌s, u∗ = utc∕lc, q∗

w = qwtc∕l2
c ,

and ∇∗ = lc∇. This gives:
dz∗

dt∗
= u∗𝜌∗ − ∇∗ ⋅ q∗

w (12)

To examine the case where the sediment transport rate per unit width, qa, is expressed by equation (5), we
substitute equation (5) into equation (2) and introduce the dimensionless groups: T∗

d = Td∕tc, A∗ = A∕l2
c ,

x∗0 = x0∕lc, y∗0 = y0∕lc, q∗
p = qptc∕l2

c , F∗ = Fl2
c t. With these length and time scales, equation (5) can be written

in its nondimensional form as

dz∗

dt∗
= u∗𝜌∗ − ∇∗ ⋅ ∫

∞

−∞ ∫
∞

−∞ ∫
T∗

d

0
F∗ (x∗0 , y∗0 , S,A∗) q∗

p

(
x∗0 , y∗0 , x∗, y∗

)
f
(

x∗, y∗, x∗0 , y∗0 , 𝜉
)

dt∗dx∗0 dy∗0 (13)

Finally, for the case where qp is described by the postulated GTL (equation (7)), we let, for convenience, F and
kdf be constant in space and time, and define K = FTdkdf . We further define L∗ = L∕lc, and let lc = (u0∕K)1∕(m+1),
and tc = (um

0 K)−1∕(m+1), where u0 is a reference uplift rate. When 𝜌r = 𝜌s this results in

dz∗

dt∗
= 1 − ∇∗ ⋅ q∗

a

= 1 + ∇∗ ⋅
[

S (x∗, y∗)
]n

∫
∞

−∞ ∫
∞

−∞

[
L∗

(
x∗0 , y∗0 , x∗, y∗

)]m
f
(

x∗, y∗, x∗0 , y∗0 , 𝜉
)

dx∗0 dy∗0 ,

(14)

such that the change in dimensionless surface elevation is described by the dimensionless length and location
quantities (L∗, x∗0 , y∗0 , x∗, y∗,∇∗), and by the surface slope (S []).

In the one-dimensional case, where dy∗ = w∗ = w∕lc, this results in

dz∗

dt∗
= 1 + w∗ d

dx∗
[

S (x∗, y∗)
]n

∫
∞

−∞

[
L∗

(
x∗0 , y∗0 , x∗, y∗

)]m
f
(

x∗, y∗, x∗0 , y∗0 , 𝜉
)

dx∗0 (15)
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2.5. Numerical Implementation
We use a node-centered finite volume numerical scheme to solve a discrete version of equation (14) over a
rectangular grid z∗i,j(xi, yj) with grid spacings Δx∗ = Δx∕lc and Δy∗ = Δy∕lc, such that

z∗i,j(xi, yj) = z∗(xi, yj)

x∗i = iΔx∗

y∗j = jΔy∗

i = 0, 1, 2 ...Nx − 1

j = 0, 1, 2 ...Ny − 1

(16)

where Nx and Ny are the grid dimensions in the x and y directions. Equation (14) can thus be written in a
discrete form:

Δz∗

Δt∗
= 1 − ∇∗

d ⋅ q∗
d (17)

where q∗
d and∇∗

d are the discrete forms of the dimensionless sediment transport rate and divergence operator,
respectively.

In equation (17), q∗
d is calculated in the downslope direction determined by a D4 routing rule in which flows

are routed to one of the surrounding four orthogonal grid nodes, (x∗n , y∗m), located in the direction of steepest
descent. D4 was chosen to avoid the dimensional inconsistency associated with flow routing through cell
corners and for algorithmic simplicity and efficiency [Costa-Cabral and Burges, 1994; Moore and Grayson, 1991;
Chirico et al., 2005; Shelef and Hilley, 2013]. Thus, xn can equal x∗i−1, x∗i , or x∗i+1, and y∗m can equal y∗j−1, y∗j , or
y∗i+j . (x∗in, y∗jm) is the location of the cell boundary midway between (x∗i , y∗j ) and the node of steepest descent,
so that x∗in can equal x∗i±1∕2 = x∗i ± Δx∕2 or x∗i , and y∗jm can equal y∗j±1∕2 = y∗j ± Δy∕2 or y∗j . The dimensionless
sediment transport rate at the cell boundary in the direction of steepest descent is thus

q∗
d

(
x∗in, y∗jm

)
= Δx∗Δy∗

W∗

Δ∗
e

||||S
(

x∗in, y∗jm

)||||
n Nx−1∑

i0=0

Ny−1∑
j0=0

[
L∗

(
x∗i0, y∗i0, x∗in, y∗jm

)]m

f
(

x∗i0, y∗i0, x∗in, y∗jm

) (18)

where L∗(x∗i0, y∗i0, x∗in, y∗jm) is the nondimensional flow runout length in the downslope direction to the point

(x∗in, y∗jm). S(x∗in, y∗jm) =
z∗(x∗n ,y

∗
m)−z∗(x∗i ,y

∗
j )

Δ∗
e

, where Δe = Δx = Δy and Δ∗
e = Δe∕lc. (x∗i0, y∗j0) is the location of flow

generation where i0, j0 are the indices of the node where flow is generated so that x∗i0 = i0Δx∗ and y∗j0 = j0Δy∗.

The factor W∗

Δ∗
e

accounts for the finite flow width (W , where W∗ = W∕lc) [i.e., Howard, 1994], which is prescribed
here as a constant whose value does not exceed the dimensionless grid spacing Δ∗

e [e.g., Perron et al., 2008].
The discrete divergence of q∗

d equals

∇∗
d ⋅ q∗

d

(
x∗i , y∗j

)
=

q∗
d

(
x∗i+1∕2, y∗j

)
− q∗

d

(
x∗i−1∕2, y∗j

)
Δx∗

+
q∗

d

(
x∗i , y∗j+1∕2

)
− q∗

d

(
x∗i , y∗j−1∕2

)
Δy∗

(19)

where the sign of q∗
d is set to positive when flows are directed to the south and west and to negative when

they are directed to the north and east, where x∗ and y∗ increase to the east and to the north, respectively.

To capture the stochastic generation of discrete flows and address numerical instabilities that occur when
R = S (section 3.2) we prescribed stochastic flow generation over the model domain. To do so, we noted
that the mean number of flows (n̄f ) generated within a prescribed nondimensional model element area
(Δx∗×Δy∗ = Δ∗2

e ) and time step (𝛿t∗) must be equal to one. In these stochastic simulations, flows are generated
at this mean frequency using the following procedure. First, the nondimensional cell dimensions (Δx∗, Δy∗)
are determined at the beginning of the simulation and from these values 𝛿t∗ is calculated as (Δx∗ × Δy∗)−1.
Second, flows are generated during each nondimensional model time increment (𝛿t∗) by drawing a random
number (rn) in the interval [0,1] for each model cell. The number of flows is assigned as follows to achieve a
mean frequency of one flow per cell during the time increment 𝛿t∗: zero flows when 0 ≤ rn < 0.25, one flow
when 0.25 ≤ rn < 0.75, and two flows when 0.75 ≤ rn <1.

When the number of flows generated at (x∗i0, y∗j0) is >0 we calculate the contribution of these flows to
the dimensionless sediment transport (q∗

d) through both local and nonlocal processes. Sediment transport
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through local diffusion is simulated by setting L∗ = L∗0, f (x∗i0, y∗j0, x∗i , y∗j , 𝜉) = 1 at the downslope boundary of
the point (x∗i0, y∗j0). Transport by nonlocal diffusion is calculated from the runout distance of flows, where flows
are allowed to run downslope as long as S̄ along their flow route is greater than R. This constraint also pre-
vents flows from initiating when S(x∗in, y∗jm) < R. Once flows run downslope, L∗ is calculated at each boundary
between nodes for each generated flow in the grid. These L∗ values are then used to calculate the nondimen-
sional sediment transport rate (q∗

d(x
∗
in, y∗jm)) due to the cumulative impact of all flows (equation (18)), such that

the mass of a flow can change as it runs downslope. These transport rates are then used to determine the
elevation at the end of the time increment 𝛿t∗ using forward Euler integration with Von Neumann stability
criteria. This process is repeated for each time increment 𝛿t∗.

Boundary conditions are specified as follows: (1) A no flux boundary through which water and sediments are
prevented from passing is set at y∗ = 0. (2) A constant elevation boundary through which water and sediment
could pass is specified at y∗ = L∗sy , where L∗sy is the length of the model domain in the y dimension. (3) A periodic
boundary is prescribed at x∗ = 0, x∗ = L∗sx (where L∗sx is the length of the model domain in the x dimension)
such that the inflow of sediment from one side of the model was set equal to the outflow of this mass on the
other side. The 1-D simulations have similar boundary conditions except that the x∗ =0, x∗ = L∗sx boundaries
are prescribed as no flux boundaries.

To ensure equivalence between the initial conditions of all simulations, we prescribed initial conditions as
follows. First, we calculated an inclined planar topography whose slope equals R and is inclined toward
the constant elevation boundary at y∗ = L∗sy . Next, we applied uniform random noise to the surface to facil-
itate lateral flow convergence. The magnitude of this noise was scaled by the magnitude of the slope of the
initial surface such that the mean local slope at individual nodes was 10 × R (this value was determined by
experiments that revealed the approximate noise level required to produce significant flow convergence). For
the case of R = 0, we repeated the above procedure with a small (1 × 10−6) initial slope that can trigger flow
runout and sediment transport.

To explore topographic patterns and fluctuations of the simulated landscapes, each simulation was run until
it attained a time-averaged steady state relief, where temporal fluctuations in the mean relief have a similar
magnitude and are centered around the same temporal mean. We then generated 200 sequential simu-
lated topographies produced every 𝛿t∗ and calculated the values of the 10th, 50th, and 90th percentiles
(pc10, pc50, pc90, respectively) of dimensionless surface elevation and slope over these 200 dimensionless time
steps. We calculated channel concavity (i.e., 𝜃, the negative of the slope regressed from the logarithmic S
versus A relations [e.g., Flint, 1974; Howard and Kerby, 1983]) from S and A∗ computed for each node after
topographic pits were filled.

3. Results
3.1. Reconciliation of Local and Nonlocal Diffusive Sediment Transport as Processes With Different
Flow Runout Distance
3.1.1. Local Diffusive Sediment Transport
We first examine the case in which the resistance coefficient is everywhere larger than the local slope
(R> S). In this case, generated flows do not run out such that L> 0 and f (x0, y0, x, y, 𝜉) = 1 only at the point
(x, y) = (x0, y0) where L = L0 to account for local sediment transport. For simplicity, we assume that the
frequency of flow generation is uniform across the landscape, such that F(x0, y0, S,A) = F0, and transform
equation (8) into radial coordinates:

sqa(r0, 𝜃0, t) = −F0kdf T[S(r, 𝜃)]n ∫
𝜋

−𝜋 ∫
L0

0
rLm

0 f (r) dr d𝜃 (20)

where r ranges from zero to L0, f (r) = f (x0, y0, x, y, 𝜉), and (r0, 𝜃0) is the location of x0, y0. Integrating
equation (20) gives

sqa(r0, 𝜃0) = −F0kdf T𝜋Lm+2
0 [S(r, 𝜃)]n = −D′[S(r, 𝜃)]n , (21)

where D′ = 𝜋F0kdf TLm+2
0 [L2 t−1]. Thus, when flows do not run out, they produce forms equivalent to those

previously idealized as arising from local diffusive transport (i.e., equation (1)), which results in the formation
of convex-up undissected hillslopes.

To numerically explore this case, where R> S over the entire landscape, we prescribed an R value (Table S1) that
is much larger than the maximal slope calculated for a 1-D convex-up surface (Svx) of length L∗sy (R>> Svx(L∗sy),
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Figure 5. Topography of convex-up surface formed by local diffusion processes (i.e., section 3.1.1). Here R>> |Svx(L∗sy)|,
where Svx(L∗sy) is the slope of steady state convex-up 1-D landscape at a distance of model length from the divide.
(a) Topography of a 1-D simulated landscape strip. The elevation at each node is the median elevation of 200
consequent simulated topographies generated every 𝛿t∗ after the simulated surface attained approximately constant
relief. The values of pc(50) and pc(90−10) reflect the median elevation of the 200 simulated topographies, as well as
the elevation values bounded between the 10th and 90th percentiles of these simulated topographies, respectively.
(b) Slope-area relations for the area shown in Figure 5a. (c) Topography of simulated 2-D topography. Contours portray
the median elevation for each node over 200 consequent simulated topographies generated every 𝛿t∗ after the
simulated surface attained approximately constant relief. The regional slope is oriented from the top to the bottom of
the figure. Colors mark the normalized magnitude of elevation fluctuations (pc(90−10)∕z̄∗) over this time period for each
node, where z̄∗ is the mean pc50 of dimensionless elevation for these 200 simulated topographies over the entire
simulated landscape. (d) Slope-area relations for the 2-D landscape shown in Figure 5c. The greyed zone indicates the
10th and 90th slope percentiles.

Table S1 in the supporting information). The 1-D simulation (Figures 5a and 5b) produces a convex-up topog-
raphy with a concavity of �̄� = −1. The 2-D simulation (Figures 5c and 5d) produces an overall smooth convex-
up topography. In contrast to the 1-D simulation, the concavity of the 2-D simulation is �̄� = −0.23 where low
A∗ values are associated with overall higher slope values than those of the 1-D simulation.
3.1.2. Nonlocal Diffusive Sediment Transport
The second end-member scenario we consider is the case in which R < S everywhere, so that R does not
constrain the flow’s runout distance. We assume that flows are generated uniformly across the surface
(F(x0, y0, S,A) = F0) such that:

sqa(x, y, t) = −F0Tkdf S(x, y)n ∫
∞

−∞ ∫
∞

−∞
[L(x, y, x0, y0)]mf (x0, y0, x, y)dx0dy0 (22)
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Figure 6. Topography of concave-up surface formed by nonlocal diffusion processes (i.e., section 3.1.2) simulated with
R = 0. (a) Topography of a 1-D simulated landscape strip. The elevation at each node is the median elevation of 200
consequent simulated topographies generated every 𝛿t∗ after the simulated surface attained approximately constant
relief. The values of pc(50) and pc(90−10) reflect the median elevation of the 200 simulated topographies, as well as the
elevation values bounded between the 10th and 90th percentiles of these simulated topographies, respectively.
(b) Slope-area relations for the area shown in Figure 6a. (c) Topography of simulated 2-D topography. Contours
portray the median elevation for each node over 200 consequent simulated topographies generated every 𝛿t∗ after
the simulated surface attained approximately constant relief. The regional slope is oriented from the top to the bottom
of the figure. Colors mark the normalized magnitude of elevation fluctuations (pc(90−10)∕z̄∗) over this time period for
each node, where z̄∗ is the mean pc50 of dimensionless elevation for these 200 simulated topographies over the entire
simulated landscape. (d) Slope-area relations for the 2-D landscape shown in Figure 6c. The greyed zone indicates the
10th and 90th slope percentiles. Note the downslope reduction of the greyed zone bounded between pc90 and pc10 in
Figure 6a, and the relatively low values of pc(90−10)∕z̄∗ within channels in Figure 6c.

The double integral on the right-hand side (RHS) of equation (22) integrates transport over the area that drains
to a particular point (x, y). By transforming Cartesian coordinates into a coordinate system in which catchment
area is related to flow length as a power function (a typical relation for various environments and processes
[Hack, 1957; Mitchell, 2005; Stepinski et al., 2002])

A = kaLh , (23)

and noting that f (x0, y0, x, y) = 1 everywhere within a basin in this new coordinate system, equation (22) can
be written as

sqa(L, t) = −F0Tkdf S(L)n ∫A
LmdA (24)
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By using equation (23) to cast equation (24) in terms of A,

sqa(A, t) = −F0Tkdf S(A)n ∫A

(
A
ka

)m∕h

dA (25)

Finally, equation (25) and its limits can be cast in terms of L by noting that

dA = hkaLh−1dL (26)

such that

sqa(L, t) = −F0Tkdf S(L)n∫
L

0
Lm+h−1hkadL (27)

yielding sqa(L, t) = − F0Tkdf kahS(L)n

m+h
Lm+h, when m + h ≠ 0, and sqa(L, t) = −F0Tkdf kahS(L)n ln(L), when m + h = 0.

Substituting L with A using Hack’s law (equation (23)) gives

sqa(a, t) = −
FTkdf hk−m∕h

a

m + h
A

′m∕h+1Sn = −kAA
′M′

Sn (28)

where M′ = m∕h + 1 (when m + h = 0, sqa(a, t) = −FTkdf k−m
a ln[ A

′

ka
]Sn). This form is equivalent to that of

equation (4), indicating that this specific end-member condition allows the proposed framework to subsume
nonlocal diffusive sediment transport akin to that of fluvial processes.

To simulate the scenario where R < S everywhere, we prescribed R = 0 such that the runout distance of the
flow is not constrained by flow resistance. The 1-D simulation (Figures 6a and 6b) produces a concave-up
topography of average concavity �̄� = 0.42. The degree of elevation fluctuations decreases gradually downs-
lope toward the model boundary at Lsy . The 2-D simulation (Figures 6c and 6d) produces branched channel
networks where topographic fluctuations on drainage divides are higher than within channels. Relatively high
topographic fluctuations at the top left and bottom right portions of the landscape are associated with lateral
divide migration. The average concavity of the 2-D simulations is about half than that of the 1-D landscape
(�̄� = 0.25).

3.2. The Impact of Flow Runout on Topographic Fluctuations
The end-member conditions examined in section 3.1 occur when the conditions S> R or S < R, which favor
concave and convex topography, respectively, hold over the entire landscape. However, this may not always
be the case due to changes in S in response to uplift and sediment transport. We next use equations (11)
and (15) to explore how the coevolution of topography and transport may form conditions in which the
end-member scenarios examined in section 3.1 are limited to only a fraction of a landscape. To do this,
we examine how uplift and sediment transport determine the spatial extent where these end-member
conditions hold.

First, we consider the extent of convex-up forms in the landscape. The nondimensional distance from the
divide (dL∗R) over which this condition applies can be evaluated in the context of equation (15) by assigning
S(dL∗R) = R, rearranging and integrating (for m ≠ 1), so that

dL∗R = w∗ L∗m+1
0

m + 1
Rn (29)

Thus, portions of the landscape located at x∗ < dL∗R will be expected to host convex-up geometries typical of
local processes (i.e., equation (1)) and portions where x∗ > dL∗R may enable generation of flows that run out.

The conditions that favor concave-up topography are those where S> R such that flows run out downslope.
The nondimensional distance from the divide (aL∗R) over which this condition operates can be evaluated in the
context of equation (15) by assigning S(aL∗R) = R, aLR = L∗, m ≠ 1, rearranging and integrating, so that

aL∗R =
(m + 1

w∗Rn

)1∕m

(30)

In these cases, flows generated at locations upslope of aL∗R will run downslope such that portions of the land-
scape located at x∗< aL∗R will be expected to host concave-up geometries. Portions where x∗ > aL∗R may be

SHELEF AND HILLEY LANDSCAPE FORMATION BY DISCRETE FLOWS 829



Journal of Geophysical Research: Earth Surface 10.1002/2015JF003693

Figure 7. Topographic fluctuations in response to S = R conditions. Topography and slope-area relations for 1-D
simulations of (a, b) convex and (c, d) concave landscape as in the 1-D simulations in Figure 5. Dashed vertical line in
Figures 7a and 7c marks the prescribed location where S = R. Dashed horizontal line in Figures 7b and 7d marks the
prescribed value of R. Note that topographic fluctuations are centered at S = R.

associated with flow arrestment due to S < R conditions. Note that x∗ < dL∗R and x∗ < aL∗R cannot overlap
because S < R conditions (i.e., x∗ < dL∗R) can not occur where S> R conditions prevail (i.e., x∗ < aL∗R).

To numerically explore the topographic response to the occurrence of S = R conditions within a landscape
(i.e., x∗ > dL∗R or x∗ > aL∗R), we simulate a simple case of an evolving landscape strip (of dimensions Δx∗ × L∗s ). In
this experiment, we prescribe R as the steady state S value midway between each strip’s divide and base level
(L∗s ∕2) for convex and concave topographies (Figure 7). To capture the topographic response to flow deposi-
tion and erosion at S = R, we suppressed the topographic fluctuations caused by stochastic flow generation.
We do so by prescribing zero flows when 0 ≤ rn < 0.01, one flow when 0.01 ≤ rn < 0.99, and two flows when
0.99 ≤ rn < 1. With these arbitrarily chosen thresholds, single flows are generated in 98% of the cases within
𝛿t∗ rather than 50% (section 2.5). We let the surface develop until a time-invariant relief is attained and contin-
ued to let it evolve while generating 200 temporally consequent modeled topographies. These topographies,
generated every t∗, were then used to trace the temporal topographic fluctuations over the simulated sur-
faces. Figure 7 shows the relations between elevation, slope, and length from divide for these unstable
topographies and demonstrates that a zone of prominent elevation fluctuations occurs at the proximity of
L∗s ∕2 (i.e., L∗ = 40). Downslope of this point, the landscape has a time-averaged constant slope of S ≃ R. Model
convergence in the context of these fluctuations is demonstrated in Figures S1 and S2.
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Figure 8. Transition from convex-up to concave-up topography as a function of the ratio between the distance from the
divide (x∗) and the effective magnitude of localized surface disturbance (L∗0, Table S1). (a) Simulated topography at
steady state. The y axis shows the dimensionless surface elevation (z∗). (b) The same topography as in Figure 8a, only
that now the y axis show the absolute value of the slope |dz∗∕dx∗| of the simulated topography. Note that the
transition from convex-up to concave-up topography occurs at x∗∕L∗0 = 1.

3.3. Transition From Convex to Concave Topography
In the proposed framework, the magnitude of sediment transport by local diffusive processes that form con-
vex topography is determined by L0, while that of nonlocal transport-limited processes that form concave
topography is determined by the cumulative runout distance (L) of flows generated upslope. Thus, the sedi-
ment transport rate at a point reflects the additive effect of local and nonlocal processes, where the magnitude
of L0 versus L determines the extent of convex versus concave topography. For example, in the simple 1-D
case (equation (15)) of R = 0, the setting of L∗ = L∗0 when (x∗, y∗) = (x∗0 , y∗0) sets the dimensionless sediment
transport rate at this point to

q∗
a (x

∗, y∗) = w∗(m + 1)−1
[

S (x∗, y∗)
]n
([

L∗
(

x∗0 , y∗0 , x∗, y∗
)]m+1 + L∗m+1

0

)
(31)

where the term ([L∗(x∗0 , y∗0 , x∗, y∗)]m+1+L∗m+1
0 ) accounts for sediment transport by both local (L∗0) and nonlocal

(L∗) diffusion at each point in the landscape. To explore the relative effect of L∗0 and L∗ on the geometry of
the simulated landscape, we analyzed its impact on the transition from convex-up to concave-up topography
over 1-D simulation of R = 0. Figure 8a shows that the resulting landscape profile is composed of a convex-up
portion upslope of x∗∕L∗0 = 1 and a concave-up one downslope of this point. Where x∗∕L∗0 = 1 reflects the
condition where the sediment transport rate due to local-diffusion is equal to that of nonlocal diffusion.
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4. Discussion
4.1. Topographic Fluctuations in Response to Constrained Flow Runout Distance
The primary difference between the framework we propose and existing theory of landscape development
by discretely generated flows [e.g., Chase, 1992; Pratson and Coakley, 1996; Crave and Davy, 2001; Haff , 2001]
is the coupling between a flows’ frequency, its interaction with the substrate over which it flows, and the
runout distance. This coupling accounts for both the frequency of flow generation (F(x0, y0, S,A)), and the way
in which flows traverse different landscape localities (captured by f (x, y, x0, y0, 𝜉)).

One interesting outcome of this coupling is that fluctuations in the transport processes that move mate-
rial across the surface are produced when the runout distance of a flow is finite and contained within the
model domain (section 3.2). Conceptually, areas of the landscape in which x∗ < aL∗R host S> R conditions
that produce stable, concave-up forms as transport capacity of geomorphic processes increases downslope,
necessitating lower slopes to match the sediment supplied and forming concave-up topography. However,
when x∗ > aL∗R, S < R conditions occur such that flows no longer run out and the sediment transport rate
decreases. As slopes increase in response to this loss in transport capacity, flows once again sweep over the
landscape. The alternation of transport processes and topographic conditions that is produced across this
transition is captured by an increase in pc(90 − 10) about this transition (Figures 7c and 7d). These fluctua-
tions are associated with a time-averaged constant slope (S ≃ R) downslope of x∗ > aL∗R (Figures 7c and 7d).
Similarly, when x∗ < dL∗R, S < R conditions prevail that produce stable, convex-up forms as transport processes
act locally (section 3.2). However, when x∗ > dL∗R, S> R conditions occur such that flows runout for substantial
distances and traverse downslope locations more frequently, causing an increase in sediment transport. As
slopes reduce in response to this increase in transport capacity, flows once again arrest, thus producing a cyclic
alternation of transport processes and topographic forms downslope of this transition (Figures 7a and 7b).
Such episodic generation and arrest of flows qualitatively resembles the deposition and collapse of debris
hollows [i.e., Dietrich and Dunne, 1978; Reneau and Dietrich, 1987; Benda, 1990]. Note that these fluctuations
persist even when all other factors remain constant (and thus resemble the instabilities described by Davy
and Lague [2009] at distances shorter than a disequilibrium distance), hence, demonstrating that topographic
fluctuations may occur regardless of external forcings such as climate or tectonic activity.

The time-averaged constant slope value (S ≃ R) downslope of x∗ > dL∗R or x∗ > aL∗R suggests that changes
in dL∗R or aL∗R in response to changes in R may cause changes in landscape relief. Thus, changes in flow
runout distance in response to temporal variations in climate or substrate material may change the
landscape relief.

4.2. Controls on the Topography of Simulated Landscapes
The numerical simulations we performed do not aim to capture the impact of a specific land-shaping process
on the resulting topography but, instead, to demonstrate that simple constraints may underlie the formation
of similar landforms across different physical environments. The variety of landscapes formed by the proposed
framework is illustrated through a field diagram that schematically summarizes our analytical and numeri-
cal results over a nondimensional parameter space (Figure 9). This diagram demonstrates the impact of the
nondimensional length from divide to outlet (L∗s ), R, and L∗0 on the form and topographic stability of 1-D land-
scapes produced by the proposed framework. The solid line that separates fields “a” and “b” describes the
parameter combination for which S = R exactly at L∗s over a convex-up surface (equation (29)). A parameter
combination that resides below this line, so that S < R everywhere (field “a”), forms a stable convex-up land-
scape where flows do not run out so the landscape is entirely dominated by local diffusion (e.g., Figure 5).
Above this line, in field “b,” S approaches R somewhere within the landscape and topographic fluctuations
arise (i.e., Figures 7a and 7b). The solid line that separates fields “c” and “d” describes the parameter combi-
nation at which S = R exactly at L∗s over a concave-up surface (equation (31)). A parameter combination that
resides below this line (zone “d”) forms a stable concave-up landscape where S > R everywhere across the land-
scape so that long runout flows are everywhere generated and traverse the entire landscape (e.g., Figure 6).
Above this line, in zone “c,” S approaches R somewhere along a concave-up landscape (e.g., Figures 7c and 7d)
so that long runout flows may periodically arrest creating topographic fluctuations (i.e., Figures 7c and 7d).

This field diagram also captures information about the impact of L∗0 on the resulting topography. As shown
in section 2.3.1 and Figure 8, L∗0 determines the magnitude of local diffusive processes, and hence the extent
of the convex-up portion of the landscape. It thus has a similar effect to that of a surface-wash efficacy vari-
able [Kirkby, 1980; Loewenherz, 1991]. For example, as L∗s decreases relative to L∗0, an increasing portion of the
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Figure 9. Field diagram showing the stability fields for convex-up and concave-up landscapes. Solid lines represent the
stability criteria for concave-up and convex-up landscapes, respectively (i.e., equations (29) and (30)). Dashed lines mark
L∗s and R values at the intersection of the stability criteria. Inset figures show schematic topographic profile representative
of the topographies simulated in each field. Solid lines in inset figures represent mathematically stable topographic
profiles (fields a, d, e), dotted lines represent unstable profiles (fields b, c). Hollow squares at the middle and bottom of
the topographic profile indicate that S = R conditions occur upslope or downslope of L∗s , respectively (this excludes
S = R occurrence at the convex-up portions upslope of L∗0 of mostly concave-up landscapes in fields c and d). Grey strip
symbolizes the zone where L∗s approaches L∗0, so that the stability criteria for concave-up topography do not hold and
the concave-up landscape in fields d and c has an increasing portion of convex-up topography.

concave-up topography in zone “d” becomes convex-up (e.g., Figure 8), so that when L∗0 = L∗s (dashed hori-
zontal line separating fields “d” and “e”) the entire landscape is convex. Thus, when L∗0 > L∗sy and R < |S(L0)|
(field “e”), the landscape is entirely convex-up although long runout flows initiate downslope of S = R. Yet the
consistent downslope increase in slope over this convex-up landscape prevents the sporadic arrest of these
flows so that no topographic fluctuations arise. The dashed vertical line separating fields “b” and “c” shows
the R value that equals the slope of a convex-up surface at a distance L∗0 from the drainage divide (R = S(L∗0)).
Thus, for a concave-up landscape located in field “c,” an increase in R causes an upslope shift of the point
S = R, so that when R = S(L∗0) (at the dashed line), the landscape is convex upslope of L∗0 and periodic arrest
and generation of flows occur downslope of this line. A further increase in R expands the extent of the convex
topography downslope of L∗0 and shifts the landscape into field “b.” Note that the stability criterion for nonlo-
cal diffusion (equation (30)) is derived only for the specific case of L∗ >> L∗0 —this approximation breaks down
as L∗s ∕L∗0 decreases and approaches one, which is schematically depicted in Figure 9 as the gray zone where
L∗s on the order of L∗0.

The hillslope forms simulated by the proposed framework demonstrate that it can produce a continuum of
hillslope topographies that captures hillslope forms produced by linear (Figures 5a and 5b) and nonlinear
(Figures 7a and 7b) diffusion [Davis, 1892; Gilbert, 1909; Culling, 1960; Roering et al., 1999, 2001]. Such a con-
tinuum is also produced by nonlocal sediment transport models that rely on topographically dependent hop
length statistics of particle motion [Tucker and Bradley, 2010; Foufoula-Georgiou et al., 2010] rather than on a
flow resistant coefficient such as R. Yet the continuum of landforms produced by the framework we propose
also encompasses the channelized portion of the landscape (Figure 6).

The variety of landscapes formed within the different fields illustrated by Figure 9 demonstrates that when
sediment transport is proportional to the frequency at which flows traverse the landscape, a simple constraint
on flow dynamics, such as the flow resistance coefficient (R), may determine the shape of the landscape.
Thus, the processes leading to the formation of a variety of natural landforms on Earth and other planets can
potentially be generalized in terms of such simple constraints.
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Our results also demonstrate that the stability criterion of Smith and Bretherton [1972], originally determined
for rainfall and overland flow, does not depend on the synchronicity and spatial uniformity of flow initia-
tion. Therefore, temporal summation of spatially discrete flows may have a similar effect to that of spatial
integration of instantaneous flows (e.g., rainfall) and both can result in the formation of an undissected con-
vex hillslopes or in the growth of perturbations along the surface and the establishment of branched valley
networks, depending on the flow characteristics (further discussed in section 4.5).

4.3. Differences Between 1-D and 2-D Simulations and Their Effect on Landscape Analysis
Interestingly, the concavity value of simulated concave-up topography (Figure 6) varies appreciably between
1-D and 2-D simulations. While the 1-D simulations of concave-up landscapes (Figures 6a and 6b) display
a concavity value similar to that prescribed by the m and n values in equation (7) (Table S1), the concavity
of the 2-D simulation (Figures 6c and 6d) is about half of the prescribed value. This difference reflects the
prescribed dependence of sediment transport on flow length (L), rather than drainage area (equation (7)).
In 1-D simulations, flow length and drainage area are linearly proportional, so the prescribed flow length
exponent m also holds when length is converted to area. In 2-D simulations, however, the nonlinear relations
between flow length and drainage area are subsumed into the area exponent M′ = mh−1 + 1 (equation (28)).
Thus, at steady state, S ∝ Amh−1n−1

, and because the value of h typically ranges between 1.4 and 2 [Hack, 1957;
Rigon et al., 1996], the resulting concavity is about half of the prescribed concavity value. This demonstrates
that when the sediment transport rate of a particular process is proportional to flow runout distance rather
than drainage area, the calibration of GTL parameters with empirical measurements of channel concavity
should account for the geometry of the drainage basin as captured by parameters such as h [Willet, 2010].

The concavity values of convex-up topography are also sensitive to whether the simulations are 1-D or 2-D.
While the 1-D convex-up simulations (Figures 5a and 5b) produce a concavity value of about −1, as expected
for the linear diffusion end-member of the proposed framework (section 3.1), the 2-D simulations produce a
concavity closer to zero where nodes of low drainage areas are associated with relatively high slope (Figure 5d
versus Figure 5b). This difference arises from the roughness of the 2-D surface, an outcome of the spatiotem-
poral heterogeneity in sediment transport rate induced by the stochastic flow generation. This roughness
causes temporal variations in flow pathways across the surface so that a node associated with steep slope
and large upslope area at a given simulation time step may have smaller upslope area at the next time step.
This results in areas of the model that have low drainage area and high slope that reduce the overall concav-
ity in comparison to the 1-D case (Figures 5b and 5d). This phenomenon introduces an uncertainty into the
standard analysis of digital elevation models (DEMs) in which the extent of the landscape that is dominated
by linear-diffusion-like processes is determined from the transition between negative to zero concavity over
slope-area plots [e.g., Montgomery and Foufoula-Georgiou, 1993; Dietrich et al., 2003; Tarolli and Dalla Fontana,
2009]. The rough topography of low concavity values produced by low-frequency high-magnitude stochastic
transport events may thus diverge from that produced by spatiotemporally continuous transport processes
and lead to underestimation of the hillslope extent, and to overestimation of areas characterized by low
concavity values such as those dominated by debris flows, landslides, or highly nonlinear hillslope diffusion
[Roering et al., 1999, 2001; Tucker and Whipple, 2002; Stock and Dietrich, 2003].

4.4. Topographic Response to Stochastic Flow Generation
High stochasticity in flow generation not only affects the convex portion of the landscape but also causes
spatial patterns in the degree of topographic fluctuations in the channelized portion of the landscape. In
simulations of concave-up landscapes (Figure 6), the magnitude of these fluctuations reduces downslope.
This is because lower portions of the landscape are traversed by discrete flows generated over multiple ups-
lope locations, such that the frequency at which discrete flows traverse landscape locations within the time
period 𝛿t∗ approaches F̄ × Nd as the upslope area increases (Nd is the number of upslope grid nodes that drain
into a given node and F̄ is the mean frequency of flow generation). Thus, while the frequency at which flows
traverse upslope areas is highly dependent on the stochasticity of flow generation, the frequency at which
flows traverse downslope locations is approximately constant and results in minor elevation fluctuations.
This resembles submarine, subaerial, or Martian basins in which the upslope, small drainage area portions
of basins have a large number of recent scarps associated with flow generation [Lucchitta, 1984; Stock and
Dietrich, 2003, 2006; Mitchell, 2005] while their lower portions maintain a smooth-looking profile devoid of
major topographic disturbances. These results demonstrate that the topographic stability of channels with
large drainage areas can be produced within a landscape in which stochastically generated flows are the sole
agent of transport. In this case, this stability may reflect a downslope averaging of the effects of upslope,
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stochastically generated, discrete flows. It might be possible to distinguish landscapes dominated by stochas-
tically generated flows using such observations of the spatial patterns of topographic fluctuations or by zero
concavity conditions adjacent to drainage divides (as described in the previous section). Yet the variety of
sediment transport processes that operate over natural landscapes (e.g., fluvial flows, soil creep, debris flows,
rockfalls, and landslides) and the relatively low frequency of discrete flows such as debris flows (in comparison
to the time scale of repeating observations) may make such distinction difficult to make.

4.5. Some Applications to Modeling and Analysis of Natural Landscapes and Processes
The numerical simulations we performed do not aim to capture the interaction of a specific land-shaping pro-
cess with the topography or the topographic signature of a specific process. Yet the framework we propose
can be used to investigate such specifics. This is enabled by the conceptual generality of equations (5) and (6),
which makes them a place holder for GTLs and runout restrictions that describe various transport processes.
Such substitution facilitates simulations that explore landscape response to such varying processes. For
example, qp (equation (5)) can be substituted with a GTL that describes sediment transport by debris flows
[e.g., Stock and Dietrich, 2006], turbidity currents [e.g., Traer et al., 2012], Martian granular flows [e.g., Shinbrot
et al., 2004], or rainfall-generated parcels of water (which can be viewed as discrete flows). Further, as demon-
strated through the effect of S̄ on the flow runout, the proposed framework can explicitly record upslope
topographic and flow conditions and account for the impact of such nonlocal factors on the downslope flow
dynamics (in the sense of Stark et al. [2009], Furbish and Haff [2010], Foufoula-Georgiou et al. [2010], Tucker and
Bradley [2010], and Falcini et al. [2013]), such that upslope flow orientation, for example, can affect erosion
and deposition at downslope locations [e.g., Howard, 1992; Stock and Dietrich, 2003, 2006]. This approach may
therefore allow information about sediment transport by individual short-term events to be assimilated into
an understanding of landscape dynamics that occur over large temporal and spatial scales.

In some cases, the parameters of the simplified GTL and runout constraint we propose (equations (7), (8),
and (11)) can be calibrated with a specific process of interest which could facilitate first-order investigations
of the interaction between this process and the landscape it forms. For example, R can be evaluated from the
slope between the initiation and deposition points of a discretely generated flow such as a rockslide, landslide,
or debris flow [e.g., Heim, 1932; Dai and Lee, 2002]. Likewise, the frequency of flow generation (F(x0, y0, S,A))
and its dependence on topographic parameters can be evaluated from topographic and time series analysis
of markers of flows generation such as landslide or rockfall scarps [e.g., Hovius et al., 1997; Dai and Lee, 2002].
Numerical investigation of landscape evolution based on such calibrated GTLs may provide first-order insights
into the topographic impact of a process of interest and aid in the development of a GTL that represents this
process more accurately.

The proposed framework uses simple formulations to produce convex, concave, and fluctuating topogra-
phies, as well as transitions between them. However, this flexibility does not mean that all landscapes can be
modeled through such simple formulations. Earth’s topography, for example, is shaped by multiple processes
[e.g., Luckman, 1992; Roering et al., 1999, 2001; Tucker and Whipple, 2002; Stock and Dietrich, 2003; Dietrich et al.,
2003] that are unlikely to be captured by a few simple formulations. Hence, an accurate model of the overall
topographic impact of various types of discrete flows requires a composite approach where different GTLs
and runout constraints are inserted in the appropriate place holders (i.e., equations (5) and (6)). This accounts
for landscape evolution in response to sediment transport by multiple processes that operate simultaneously
over the landscape.

While typical GTLs [Dietrich et al., 2003] treat the spatial and temporal heterogeneity of natural processes
by encapsulating their time-averaged behavior into an unvarying rate constant, the framework we pro-
pose facilitates explicit treatment of this heterogeneity (similar to Chase [1992], Pratson and Coakley [1996],
Crave and Davy [2001], and Haff [2001]). This enables modeling of landscape development over time scales
that are shorter than the time span assumed when processes are cast in time-averaged parameters. For
example, in the case of local processes, the proposed framework enables explicit treatment of spatiotemporal
variations in sediment transport through bioturbative processes such as gopher burrowing or tree fall [Black
and Montgomery, 1991; Norman et al., 1995; Roering et al., 2001; Gabet et al., 2003]. Thus, field-measured param-
eters such as the spatiotemporal distribution of tree-fall events and their magnitude and direction can be
treated, and the landscape’s response to these parameters can be simulated. The proposed framework may
thus facilitate prediction of short-term topographic response to abrupt climatic, biogenic, and anthropogenic
perturbations.

SHELEF AND HILLEY LANDSCAPE FORMATION BY DISCRETE FLOWS 835



Journal of Geophysical Research: Earth Surface 10.1002/2015JF003693

In the case of nonlocal processes, the explicit treatment of spatiotemporally discrete flows may also aid in
capturing the topographic effect of phenomena such as discrete precipitation events. Although discharge-
and frequency-dependent sediment transport mechanisms are not necessarily exclusive (i.e., individual
sediment-carrying parcels of water can be viewed as discrete flows, such that downslope increase in dis-
charge can be akin to downslope increase in the frequency at which such flows traverse a given locations),
these mechanisms can differ even in a simple fluvial scenario. For example, discharge-dependent GTLs
(e.g., equation (4)) typically assume that upslope drainage area determines the discharge and the associ-
ated flow depth (assuming some channel geometry) which affect the flow dynamics and sediment transport
capacity [e.g., Howard, 1980; Willgoose et al., 1991a; Howard, 1994; Whipple and Tucker, 2002]. However, while
this holds when precipitation is uniformly distributed over a basin, it may differ when the same amount of
precipitation is distributed discretely in space and time [e.g., Tucker and Bras, 2000; Snyder et al., 2003]. When
the time interval between discrete flow-generating precipitation events is longer than their duration, flows
generated at different parts of a basin do not coalesce downslope to form a high-discharge event. Instead,
multiple-flow events of low discharge may flow through the basin outlet. Thus, although the same volume of
water may flow through the basin over some time period used to average the landscape response, the overall
volume of sediment carried by the water in these uniformly distributed and discrete cases may be different.
This difference reflects the nonlinear dependence between sediment transport rate and discharge [Tucker
and Bras, 2000; Snyder et al., 2003]), such that the quantity of sediment transported by a high-discharge event
can be greater than that carried by the same discharge partitioned into several smaller events and summed
up. The dependence between topographic response and drainage area may thus be different between these
two scenarios, and accounting for the number of flow events that traverse different locations within a basin,
as well as their interactions (captured in 𝜉), may be essential to properly capture the topographic response to
these events. The proposed framework may therefore provide a convenient template for simulating the topo-
graphic impact of phenomena such as desert floods in a manner that accounts for the high spatiotemporal
variation [e.g., Sharon, 1972] in the precipitation events that generate these floods. The impact of upslope
infiltration and evaporation [e.g., Dahan et al., 2008] on the runout distance of these floods may be accounted
for by utilizing the nonlocal capability of the proposed framework.

4.6. Limitations and Scope
While the general framework we propose in equations (5) and (6) aims to address the ubiquity of hillslopes and
channel networks across different physical environments (dominated by both uniformly distributed and dis-
crete flows), some fundamental questions associated with this ubiquity are yet to be answered. For example,
we do not address the question of why and how different processes that operate in disparate physical environ-
ments are characterized by a nonlinear increase in sediment transport capacity (in excess of sediment supply)
per unit area.

The proposed framework is primarily cast in terms of “transport-limited” conditions (equation (2)) to demon-
strate that hillslopes and channel networks can be viewed as end-member morphologies along a continuum
controlled by the landscape and flow runout lengths (Figure 9 and equations (29) and (30)). While a modifica-
tion of the framework can describe “detachment-limited” channel erosion (section 2.3.2) it does not reconcile
“detachment-limited” erosion and hillslope formation as part of the same continuum (i.e., Figure 9 does not
include detachment-limited conditions). Note that the flow runout length we use describes the distance to
which an individual flow may progress downslope (with or without sediment), and that it differs from the
“transport distance” used by Kooi and Beaumont [1994, 1996] and Crave and Davy [2001].

The energy balance in equation (11) assumes a constant flow mass and in this way is inconsistent with the
fact that flow mass may change downslope as it deposits and entrains mass from the bed (equation (7)). This
inconsistency is an outcome of the complex momentum exchange between the flow and its surrounding
[Iverson, 1997] (see section 2.3.3). We allow and acknowledge this inconsistency in our illustrative models, but
note that an energy balance that couples the runout of the flow to mass and momentum would be a fruitful
addition to this work. Note that equation (11) is substituted into the runout distance constraint (equation (6))
to provide a simple illustration of the effect of limited runout distance and that other formulations that
describe specific processes can be substituted into equation (6) instead.

The computation time of landscape evolution models is typically constrained by O(N log N) operations or less
[e.g., Braun and Willett, 2013; Richardson et al., 2014], which is more efficient than that of the proposed frame-
work (O(N2)). This computation time inefficiency is an outcome of tracing individual flows to determine their

SHELEF AND HILLEY LANDSCAPE FORMATION BY DISCRETE FLOWS 836



Journal of Geophysical Research: Earth Surface 10.1002/2015JF003693

runout distance. However, because in each time step the flows run over the topography formed in the previous
time step, and because we do not consider flow coalescence, individual flows can be treated independently
such that parallelizing this framework is straightforward. Such parallelization, however, is impossible in simula-
tions that seek to explore the effect of flow coalescence (or other forms of interaction between flows) because
in that case flows are no longer independent and the quantity of sediment transported by all flows can not
be computed through a simple summation.

Although flow coalescence can be accounted for by the state variable 𝜉, for simplicity and computational
expediency this study does not explore such processes. One way to account for flow coalescence is through a
probabilistic approach, where, for example, the likelihood of flow coalescence increases with the number of
flows that traverse a pixel within a time step. An alternate, more physical approach can be applied for flows
of known velocity, spatial dimensions, and generation time, such that flows and their coalescence can be
explicitly traced in space and time. As noted in the previous paragraph, accounting for flow coalescence will
increase the model’s computational load.

The numerical implementation generates flows from pixel-sized locations (similar to Chase [1992], Pratson
and Coakley [1996], Crave and Davy [2001], and Haff [2001]) and routes them downslope using a single flow
direction routing scheme, thus introducing some gridded imprint on the evolving landscape. This imprint
can be reduced by enabling generation of multipixel flows (which can be easily prescribed into the exist-
ing framework), and using multiple direction routing scheme [e.g., Freeman, 1991; Tarboton, 1997; Shelef and
Hilley, 2013]. Using such routing schemes, however, will increase computational load because each portion
of a bifurcating flow will have to be traced to determine the conditions for its arrest.

5. Summary

Branched valley networks and undissected hillslopes are observed across disparate physical environments,
where both discrete and uniformly distributed flows shape the landscape. This ubiquity suggests that com-
mon criteria exists for the formation of these landforms, regardless of the physical conditions and types of
flows that shape these landscapes. This study formulates an analytical framework that casts the conditions for
channel networks and hillslope formation by discrete flows in general terms that are likely common to these
different environments. This framework describes changes in surface topography expected to arise from sed-
iment transport events that are discrete in space and time. The amount of sediment carried through each
point in the landscape depends on topographic attributes, as well as the frequency at which this point is tra-
versed by discrete flows, a frequency that is in turn dependent on the conditions for flow generation and
arrest (described here by a simple energy balance). These dependencies explicitly link the time scale of sedi-
ment transport to the topography and flow dynamics that control flow generation and arrest, and thus offer
an alternative to the spatially unvarying rate constant typically used in GTLs. Further, treating flows as dis-
crete entities facilitates incorporation of nonlocal impacts on the sediment transport rate at a point, as well as
explicit treatment of natural process whose behavior is stochastic over short time scales. Thus, the proposed
framework provides a rational means of modeling natural flows whose dynamics and frequency of occurrence
may vary both spatially and temporally.

We explore this framework through a simple, posited GTL and a flow runout constraint, which together
describe flows that differ in their runout distance and in the way their transport capacity changes downslope.
We use this GTL and runout constraint to show that the rate of sediment transport by multiple individual
flows may or may not depend on a drainage area term (akin to that used in GTLs describing fluvial pro-
cesses) depending on their flow characteristics and to analytically and numerically demonstrate that specific
end-members implied by the proposed framework produce branched channel networks and undissected
hillslopes, as well as topographic fluctuations that persist even when all other factors remain constant through
time. The framework’s structure facilitates substitution of these posited GTL and runout constraints with
expressions that are more representative of specific processes. Our results also demonstrate that the stability
criteria of Smith and Bretherton [1972], originally determined for rainfall and overland flow, do not depend
on the synchronicity and uniformity of flow initiation, in that temporal summation of spatially discrete flows
(with M′ > 0, R < S, section 3.1.2) may result in topographic instability and perturbation growth akin to those
produced from spatial integration of instantaneous flows (e.g., distributed rainfall). Hence, both can result
in the formation of hillslopes or in establishment of branched valley networks, depending on the flow
characteristics.
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Notation

a Coordinate of a given location in 1-D space [L2].
a0 Coordinate of flow generation location in 1-D space [L2].

A Drainage area [L2].
A

′
Integration boundary that reflects the area that drains into a point [L2].

D Rate constant for diffusive GTL [L2t−1].
D′ Rate constant for diffusive processes attained through combination of parameters from the

proposed framework [L2t−1].
dx, dy Infinitesimal length increments [L].

Ė Erosion rate [Lt−1].
F Frequency of flow generation [L−2t−1].
F̄ Mean frequency of flow generation [L−2t−1].

F0 Reference frequency of flow generation [L−2t−1].
g Gravitation acceleration [L t−2].
h Exponent relating maximal flow length and drainage area [].

i, j Grid indices [].
i0, j0 Grid indices of nodes where flows are generated [].

k Rate constant for nonlocal diffusive fluvial sediment transport-limited GTL [L2−2m t−1].
kdf Rate constant for a portion of discrete flow [L 2−m t−1].
ka Coefficient relating maximal flow length and flow area [L2−h] .
kA Rate constant for discrete flows when length is converted to area [L 2−2m t−1].
K Representation of the grouped coefficients kdf TF [Lmt−1].
lc Characteristic length [L].
L Flow route length [L].

L0 Finite length correlative to momentum provided by localized surface disturbance [L].
m′ Drainage area exponent in the context of traditional GTLs [].
m Flow route length exponent [].
M Flow mass [M].

M′ Area exponent [].
n′ Surface slope exponent in the context of traditional GTLs [].
n Surface slope exponent in the context of discrete flows [].

n̄f Number of discrete flows generated within dimensionless area Δx∗,Δy∗ and time interval.
N Number of flows that traverse a location [].

Nd Number of upslope grid nodes that drain into a given node [].
pc Given percentile of a topographic metric (elevation, slope) extracted from N number

of simulations [].
qa Sediment transport rate per unit width summed for all flows that traverse a point [L2 t−1].

sqa Sediment transport rate per unit width summed for all flows that traverse a point according
to specific formulation in equation (8) [L2 t−1].

qdif Sediment transport rate per unit width for diffusive processes [L2 t−1].
qn Sediment transport rate per unit width for nonlocal diffusive processes [L2 t−1].
qp Sediment transport rate per unit width of a portion of a flow at a point [L2 t−1].

sqp Sediment transport rate per unit width of a portion of a flow according to specific formulation
in equation (7) [L2 t−1].

qpe Erosion rate for a portion of a flow according to specific formulation in equation (9) [L t−1].
qs Sediment transport rate per unit width that is required to maintain steady state [L2 t−1].

qw Sediment transport rate per unit width [L2 t−1].
rn Random number between zero and one that determines the number of flows generated at each

grid node [].
R Flow resistance coefficient [].
S Surface slope [].

Svx Steady state slope over 1-D convex-up landscape [].
Sve Steady state slope over 1-D concave-up landscape [].

S̄ Mean slope along flow route [].
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t Time [t].
tc Reference time interval [t].

Td Flow duration [t].
u Rock uplift rate [L t−1].

u0 Reference rock uplift rate [L t−1].
w Width of a landscape strip [L].
W Channel width [L].

x, y Spatial coordinates [L].
x0, y0 Coordinates of flow generation location [L].

z Elevation [m].
ΔH Finite elevation difference [L].
ΔL Finite flow route length difference [L].
Δx Distance between grid nodes in x direction [L].
Δy Distance between grid nodes in y direction [L].
Δe Grid node spacing [L].
∇ Divergence operator [L−1].
𝜃 Channel concavity [].
𝜌r Rock density [M L−3].
𝜌s Sediment density [M L−3].
𝜉 State variable that accounts for flow characteristics (e.g., geometry, rheology) [].
𝜁 A function that captures the dependence of flow runout distance on flow properties and

topography.
A∗ Dimensionless drainage area [].
A∗

i Nondimensional drainage area of the ith node of a given grid [].
Ā∗ Mean drainage area for a grid [].

dx∗, dy∗ Nondimensional infinitesimal length increments[].
F∗ Dimensionless frequency of flow generation [].

k∗
df

Dimensionless rate constant for a portion of discrete flow [].
L∗ Dimensionless flow route length [].
L∗0 Dimensionless finite length correlative to momentum provided by localized surface

disturbance [].
aL∗R Dimensionless critical length from divide for nonlocal processes [].
dL∗R Dimensionless critical length from divide for diffusive processes [].

L∗s Dimensionless simulation length from divide to a constant elevation boundary [].
L∗sy Dimensionless simulation length in the y direction [].
L∗sx Dimensionless simulation length in the x direction [].
q∗

a Dimensionless sediment transport rate per unit width summed for all flows that traverse
a point [].

q∗
d Discrete dimensionless sediment transport rate per unit width summed for all flows that traverse

a point [].
q∗

p Dimensionless sediment transport rate per unit width of a portion of a flow at a point [].
q∗

w Dimensionless sediment transport rate per unit width [].
t∗ Dimensionless model time [].

T∗ Dimensionless flow duration [].
u∗ Dimensionless uplift [].

w∗ Dimensionless width of 1-D surface [].
W∗ Dimensionless channel width [].

x∗, y∗ Dimensionless spatial coordinates [].
x∗0 , y∗0 Dimensionless coordinates of flow generation location [].

x∗i0, y∗j0 Dimensionless discrete coordinates of flow generation location [].
x∗i , y∗j Dimensionless discrete coordinates [].

x∗i±1∕2, y∗j±1∕2 Dimensionless discrete coordinates between (x∗i , y∗j ) and (x∗i ± Δx∗∕2, y∗j ± Δy∗∕2) [].
x∗n , y∗m Dimensionless discrete coordinates of the node in the direction of steepest descent

from (x∗i , y∗j ) [].
x∗in, y∗jm Dimensionless discrete coordinates midway between (x∗i , y∗j ) and (x∗n , y∗m) [].
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z∗ Dimensionless elevation [].
z̄∗ Mean dimensionless elevation over a grid [].
z∗i,j Discrete dimensionless elevation at the node (i, j) [].

Δx∗ Dimensionless distance between grid nodes in x direction [].
Δy∗ Dimensionless distance between grid nodes in y direction [].
Δ∗

nm Dimensionless distance between (xi, yj) and (xn, ym) [].
Δt∗ Dimensionless model time step [].
𝛿t∗ Prescribed dimensionless time increment that ensures n̄f = 1 [].
Δ∗

e Dimensionless grid node spacing [].
∇∗ Dimensionless divergence operator [].
∇∗

d Discrete dimensionless divergent operator [].
𝜌∗ Dimensionless density [].
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